4,784 research outputs found

    An OpenSHMEM Implementation for the Adapteva Epiphany Coprocessor

    Full text link
    This paper reports the implementation and performance evaluation of the OpenSHMEM 1.3 specification for the Adapteva Epiphany architecture within the Parallella single-board computer. The Epiphany architecture exhibits massive many-core scalability with a physically compact 2D array of RISC CPU cores and a fast network-on-chip (NoC). While fully capable of MPMD execution, the physical topology and memory-mapped capabilities of the core and network translate well to Partitioned Global Address Space (PGAS) programming models and SPMD execution with SHMEM.Comment: 14 pages, 9 figures, OpenSHMEM 2016: Third workshop on OpenSHMEM and Related Technologie

    Hierarchical stack filtering : a bitplane-based algorithm for massively parallel processors

    Get PDF
    With the development of novel parallel architectures for image processing, the implementation of well-known image operators needs to be reformulated to take advantage of the so-called massive parallelism. In this work, we propose a general algorithm that implements a large class of nonlinear filters, called stack filters, with a 2D-array processor. The proposed method consists of decomposing an image into bitplanes with the bitwise decomposition, and then process every bitplane hierarchically. The filtered image is reconstructed by simply stacking the filtered bitplanes according to their order of significance. Owing to its hierarchical structure, our algorithm allows us to trade-off between image quality and processing time, and to significantly reduce the computation time of low-entropy images. Also, experimental tests show that the processing time of our method is substantially lower than that of classical methods when using large structuring elements. All these features are of interest to a variety of real-time applications based on morphological operations such as video segmentation and video enhancement

    Design of testbed and emulation tools

    Get PDF
    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems

    A Special Purpose Architecture for Finite Element Analysis

    Get PDF
    The analysis of aerospace structures by the finite element method consumes considerable computer time. The cost of this resource and the designer's desire to have rapid feedback concerning such questions as the effect of a change in loading of the structure or in a parameter of some structural material led to the design of a special purpose parallel computing system for finite element analysis. As a special purpose computer, the architecture of this finite element computer is closely tied to computational aspects of the particular problem. Various aspects of an MIMD array of microprocessors are related to the requirements of the class of finite element analysis problems which it is intended to solve

    High accuracy computation with linear analog optical systems: a critical study

    Get PDF
    High accuracy optical processors based on the algorithm of digital multiplication by analog convolution (DMAC) are studied for ultimate performance limitations. Variations of optical processors that perform high accuracy vector-vector inner products are studied in abstract and with specific examples. It is concluded that the use of linear analog optical processors in performing digital computations with DMAC leads to impractical requirements for the accuracy of analog optical systems and the complexity of postprocessing electronics
    • …
    corecore