2 research outputs found

    A Versatile Approach to Evaluating and Testing Automated Vehicles based on Kernel Methods

    Full text link
    Evaluation and validation of complicated control systems are crucial to guarantee usability and safety. Usually, failure happens in some very rarely encountered situations, but once triggered, the consequence is disastrous. Accelerated Evaluation is a methodology that efficiently tests those rarely-occurring yet critical failures via smartly-sampled test cases. The distribution used in sampling is pivotal to the performance of the method, but building a suitable distribution requires case-by-case analysis. This paper proposes a versatile approach for constructing sampling distribution using kernel method. The approach uses statistical learning tools to approximate the critical event sets and constructs distributions based on the unique properties of Gaussian distributions. We applied the method to evaluate the automated vehicles. Numerical experiments show proposed approach can robustly identify the rare failures and significantly reduce the evaluation time

    Synthesis of Different Autonomous Vehicles Test Approaches

    Full text link
    Currently, the most prevalent way to evaluate an autonomous vehicle is to directly test it on the public road. However, because of recent accidents caused by autonomous vehicles, it becomes controversial about whether on-road tests should be the best approach. Alternatively, people use test tracks or simulation to assess the safety of autonomous vehicles. These approaches are time-efficient and less costly, however, their credibility varies. In this paper, we propose to use a co-Kriging model to synthesize the results from different evaluation approaches, which allows us to fully utilize the information and provides an accurate, affordable, and safe way to assess a design of an autonomous vehicle
    corecore