3 research outputs found

    Comprehensive Survey and Analysis of Techniques, Advancements, and Challenges in Video-Based Traffic Surveillance Systems

    Get PDF
    The challenges inherent in video surveillance are compounded by a several factors, like dynamic lighting conditions, the coordination of object matching, diverse environmental scenarios, the tracking of heterogeneous objects, and coping with fluctuations in object poses, occlusions, and motion blur. This research endeavor aims to undertake a rigorous and in-depth analysis of deep learning- oriented models utilized for object identification and tracking. Emphasizing the development of effective model design methodologies, this study intends to furnish a exhaustive and in-depth analysis of object tracking and identification models within the specific domain of video surveillance

    Automated Approach for Computer Vision-based Vehicle Movement Classification at Traffic Intersections

    Get PDF
    Movement specific vehicle classification and counting at traffic intersections is a crucial component for various traffic management activities. In this context, with recent advancements in computer-vision based techniques, cameras have emerged as a reliable data source for extracting vehicular trajectories from traffic scenes. However, classifying these trajectories by movement type is quite challenging as characteristics of motion trajectories obtained this way vary depending on camera calibrations. Although some existing methods have addressed such classification tasks with decent accuracies, the performance of these methods significantly relied on manual specification of several regions of interest. In this study, we proposed an automated classification method for movement specific classification (such as right-turn, left-turn and through movements) of vision-based vehicle trajectories. Our classification framework identifies different movement patterns observed in a traffic scene using an unsupervised hierarchical clustering technique Thereafter a similarity-based assignment strategy is adopted to assign incoming vehicle trajectories to identified movement groups. A new similarity measure was designed to overcome the inherent shortcomings of vision-based trajectories. Experimental results demonstrated the effectiveness of the proposed classification approach and its ability to adapt to different traffic scenarios without any manual intervention.This is a pre-print of the article Jana, Udita, Jyoti Prakash Das Karmakar, Pranamesh Chakraborty, Tingting Huang, Dave Ness, Duane Ritcher, and Anuj Sharma. "Automated Approach for Computer Vision-based Vehicle Movement Classification at Traffic Intersections." arXiv preprint arXiv:2111.09171 (2021). DOI: 10.48550/arXiv.2111.09171. Copyright 2021 The Authors. Posted with permission
    corecore