28,522 research outputs found

    A Variational Approach to Joint Denoising, Edge Detection and Motion Estimation

    Get PDF

    Self-Supervised Variational Auto-Encoders

    Full text link
    Density estimation, compression and data generation are crucial tasks in artificial intelligence. Variational Auto-Encoders (VAEs) constitute a single framework to achieve these goals. Here, we present a novel class of generative models, called self-supervised Variational Auto-Encoder (selfVAE), that utilizes deterministic and discrete variational posteriors. This class of models allows to perform both conditional and unconditional sampling, while simplifying the objective function. First, we use a single self-supervised transformation as a latent variable, where a transformation is either downscaling or edge detection. Next, we consider a hierarchical architecture, i.e., multiple transformations, and we show its benefits compared to the VAE. The flexibility of selfVAE in data reconstruction finds a particularly interesting use case in data compression tasks, where we can trade-off memory for better data quality, and vice-versa. We present performance of our approach on three benchmark image data (Cifar10, Imagenette64, and CelebA).Comment: 19 pages, 14 figures, 2 table

    Geometrical-based algorithm for variational segmentation and smoothing of vector-valued images

    No full text
    An optimisation method based on a nonlinear functional is considered for segmentation and smoothing of vector-valued images. An edge-based approach is proposed to initially segment the image using geometrical properties such as metric tensor of the linearly smoothed image. The nonlinear functional is then minimised for each segmented region to yield the smoothed image. The functional is characterised with a unique solution in contrast with the Mumford–Shah functional for vector-valued images. An operator for edge detection is introduced as a result of this unique solution. This operator is analytically calculated and its detection performance and localisation are then compared with those of the DroGoperator. The implementations are applied on colour images as examples of vector-valued images, and the results demonstrate robust performance in noisy environments

    A variational algorithm for the detection of line segments

    Get PDF
    In this paper we propose an algorithm for the detection of edges in images that is based on topological asymptotic analysis. Motivated from the Mumford--Shah functional, we consider a variational functional that penalizes oscillations outside some approximate edge set, which we represent as the union of a finite number of thin strips, the width of which is an order of magnitude smaller than their length. In order to find a near optimal placement of these strips, we compute an asymptotic expansion of the functional with respect to the strip size. This expansion is then employed for defining a (topological) gradient descent like minimization method. As opposed to a recently proposed method by some of the authors, which uses coverings with balls, the usage of strips includes some directional information into the method, which can be used for obtaining finer edges and can also result in a reduction of computation times

    Modeling heterogeneity in random graphs through latent space models: a selective review

    Get PDF
    We present a selective review on probabilistic modeling of heterogeneity in random graphs. We focus on latent space models and more particularly on stochastic block models and their extensions that have undergone major developments in the last five years

    SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences

    Full text link
    While most scene flow methods use either variational optimization or a strong rigid motion assumption, we show for the first time that scene flow can also be estimated by dense interpolation of sparse matches. To this end, we find sparse matches across two stereo image pairs that are detected without any prior regularization and perform dense interpolation preserving geometric and motion boundaries by using edge information. A few iterations of variational energy minimization are performed to refine our results, which are thoroughly evaluated on the KITTI benchmark and additionally compared to state-of-the-art on MPI Sintel. For application in an automotive context, we further show that an optional ego-motion model helps to boost performance and blends smoothly into our approach to produce a segmentation of the scene into static and dynamic parts.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Multistart Methods for Quantum Approximate Optimization

    Full text link
    Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters to maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima in the space of parameters makes it harder for the classical optimizer. In this paper we study the use of a multistart optimization approach within a QAOA framework to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT
    • 

    corecore