4 research outputs found

    DOGeye: Controlling your Home with Eye Interaction

    Get PDF
    Nowadays home automation, with its increased availability, reliability and with its ever reducing costs is gaining momentum and is starting to become a viable solution for enabling people with disabilities to autonomously interact with their homes and to better communicate with other people. However, especially for people with severe mobility impairments, there is still a lack of tools and interfaces for effective control and interaction with home automation systems, and general-purpose solutions are seldom applicable due to the complexity, asynchronicity, time dependent behavior, and safety concerns typical of the home environment. This paper focuses on user-environment interfaces based on the eye tracking technology, which often is the only viable interaction modality for users as such. We propose an eye-based interface tackling the specific requirements of smart environments, already outlined in a public Recommendation issued by the COGAIN European Network of Excellence. The proposed interface has been implemented as a software prototype based on the ETU universal driver, thus being potentially able to run on a variety of eye trackers, and it is compatible with a wide set of smart home technologies, handled by the Domotic OSGi Gateway. A first interface evaluation, with user testing sessions, has been carried and results show that the interface is quite effective and usable without discomfort by people with almost regular eye movement control

    Interacting with Smart Environments: Users, Interfaces, and Devices

    Get PDF
    A Smart Environment is an environment enriched with disappearing devices, acting together to form an “intelligent entity”. In such environments, the computing power pervades the space where the user lives, so it becomes particularly important to investigate the user’s perspective in interacting with her surrounding. Interaction, in fact, occurs when a human performs some kind of activity using any computing technology: in this case, the computing technology has an intelligence of its own and can potentially be everywhere. There is no well-defined interaction situation or context, and interaction can happen casually or accidentally. The objective of this dissertation is to improve the interaction between such complex and different entities: the human and the Smart Environment. To reach this goal, this thesis presents four different and innovative approaches to address some of the identified key challenges. Such approaches, then, are validated with four corresponding software solutions, integrated with a Smart Environment, that I have developed and tested with end-users. Taken together, the proposed solutions enable a better interaction between diverse users and their intelligent environments, provide a solid set of requirements, and can serve as a baseline for further investigation on this emerging topic
    corecore