4 research outputs found

    Local Distance Restricted Bribery in Voting

    Full text link
    Studying complexity of various bribery problems has been one of the main research focus in computational social choice. In all the models of bribery studied so far, the briber has to pay every voter some amount of money depending on what the briber wants the voter to report and the briber has some budget at her disposal. Although these models successfully capture many real world applications, in many other scenarios, the voters may be unwilling to deviate too much from their true preferences. In this paper, we study the computational complexity of the problem of finding a preference profile which is as close to the true preference profile as possible and still achieves the briber's goal subject to budget constraints. We call this problem Optimal Bribery. We consider three important measures of distances, namely, swap distance, footrule distance, and maximum displacement distance, and resolve the complexity of the optimal bribery problem for many common voting rules. We show that the problem is polynomial time solvable for the plurality and veto voting rules for all the three measures of distance. On the other hand, we prove that the problem is NP-complete for a class of scoring rules which includes the Borda voting rule, maximin, Copelandα^\alpha for any α[0,1]\alpha\in[0,1], and Bucklin voting rules for all the three measures of distance even when the distance allowed per voter is 11 for the swap and maximum displacement distances and 22 for the footrule distance even without the budget constraints (which corresponds to having an infinite budget). For the kk-approval voting rule for any constant k>1k>1 and the simplified Bucklin voting rule, we show that the problem is NP-complete for the swap distance even when the distance allowed is 22 and for the footrule distance even when the distance allowed is 44 even without the budget constraints.Comment: Accepted as an extended abstract in AAMAS 201

    Multi-Party Campaigning

    Full text link
    We study a social choice setting of manipulation in elections and extend the usual model in two major ways: first, instead of considering a single manipulating agent, in our setting there are several, possibly competing ones; second, instead of evaluating an election after the first manipulative action, we allow several back-and-forth rounds to take place. We show that in certain situations, such as in elections with only a few candidates, optimal strategies for each of the manipulating agents can be computed efficiently. Our algorithmic results rely on formulating the problem of finding an optimal strategy as sentences of Presburger arithmetic that are short and only involve small coefficients, which we show is fixed-parameter tractable -- indeed, one of our contributions is a general result regarding fixed-parameter tractability of Presburger arithmetic that might be useful in other settings. Following our general theorem, we design quite general algorithms; in particular, we describe how to design efficient algorithms for various settings, including settings in which we model diffusion of opinions in a social network, complex budgeting schemes available to the manipulating agents, and various realistic restrictions on adversary actions

    Opinion Diffusion and Campaigning on Society Graphs

    Full text link
    We study the effects of campaigning, where the society is partitioned into voter clusters and a diffusion process propagates opinions in a network connecting the clusters. Our model is very powerful and can incorporate many campaigning actions, various partitions of the society into clusters, and very general diffusion processes. Perhaps surprisingly, we show that computing the cheapest campaign for rigging a given election can usually be done efficiently, even with arbitrarily-many voters. Moreover, we report on certain computational simulations

    A Unifying Framework for Manipulation Problems

    No full text
    Manipulation models for electoral systems are a core research theme in social choice theory; they include bribery (unweighted, weighted, swap, shift, ...), control (by adding or deleting voters or candidates), lobbying in referenda and others. We develop a unifying framework for manipulation models with few types of people, one of the most commonly studied scenarios. A critical insight of our framework is to separate the descriptive complexity of the voting rule R from the number of types of people. This allows us to finally settle the computational complexity of R-Swap Bribery, one of the most fundamental manipulation problems. In particular, we prove that R-Swap Bribery is fixed-parameter tractable when R is Dodgson's rule and Young's rule, when parameterized by the number of candidates. This way, we resolve a long-standing open question from 2007 which was explicitly asked by Faliszewski et al. [JAIR 40, 2011]. Our algorithms reveal that the true hardness of bribery problems often stems from the complexity of the voting rules. On one hand, we give a fixed-parameter algorithm parameterized by number of types of people for complex voting rules. Thus, we reveal that R-Swap Bribery with Dodgson's rule is much harder than with Condorcet's rule, which can be expressed by a conjunction of linear inequalities, while Dodson's rule requires quantifier alternation and a bounded number of disjunctions of linear systems. On the other hand, we give an algorithm for quantifier-free voting rules which is parameterized only by the number of conjunctions of the voting rule and runs in time polynomial in the number of types of people. This way, our framework explains why Shift Bribery is polynomial-time solvable for the plurality voting rule, making explicit that the rule is simple in that it can be expressed with a single linear inequality, and that the number of voter types is polynomial.Comment: 15 pages, accepted to AAMAS 201
    corecore