748 research outputs found

    A Unified Framework for Stochastic Matrix Factorization via Variance Reduction

    Full text link
    We propose a unified framework to speed up the existing stochastic matrix factorization (SMF) algorithms via variance reduction. Our framework is general and it subsumes several well-known SMF formulations in the literature. We perform a non-asymptotic convergence analysis of our framework and derive computational and sample complexities for our algorithm to converge to an ϵ\epsilon-stationary point in expectation. In addition, extensive experiments for a wide class of SMF formulations demonstrate that our framework consistently yields faster convergence and a more accurate output dictionary vis-\`a-vis state-of-the-art frameworks

    Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation

    Full text link
    Low-rank modeling plays a pivotal role in signal processing and machine learning, with applications ranging from collaborative filtering, video surveillance, medical imaging, to dimensionality reduction and adaptive filtering. Many modern high-dimensional data and interactions thereof can be modeled as lying approximately in a low-dimensional subspace or manifold, possibly with additional structures, and its proper exploitations lead to significant reduction of costs in sensing, computation and storage. In recent years, there is a plethora of progress in understanding how to exploit low-rank structures using computationally efficient procedures in a provable manner, including both convex and nonconvex approaches. On one side, convex relaxations such as nuclear norm minimization often lead to statistically optimal procedures for estimating low-rank matrices, where first-order methods are developed to address the computational challenges; on the other side, there is emerging evidence that properly designed nonconvex procedures, such as projected gradient descent, often provide globally optimal solutions with a much lower computational cost in many problems. This survey article will provide a unified overview of these recent advances on low-rank matrix estimation from incomplete measurements. Attention is paid to rigorous characterization of the performance of these algorithms, and to problems where the low-rank matrix have additional structural properties that require new algorithmic designs and theoretical analysis.Comment: To appear in IEEE Signal Processing Magazin

    Low-Rank Modeling and Its Applications in Image Analysis

    Full text link
    Low-rank modeling generally refers to a class of methods that solve problems by representing variables of interest as low-rank matrices. It has achieved great success in various fields including computer vision, data mining, signal processing and bioinformatics. Recently, much progress has been made in theories, algorithms and applications of low-rank modeling, such as exact low-rank matrix recovery via convex programming and matrix completion applied to collaborative filtering. These advances have brought more and more attentions to this topic. In this paper, we review the recent advance of low-rank modeling, the state-of-the-art algorithms, and related applications in image analysis. We first give an overview to the concept of low-rank modeling and challenging problems in this area. Then, we summarize the models and algorithms for low-rank matrix recovery and illustrate their advantages and limitations with numerical experiments. Next, we introduce a few applications of low-rank modeling in the context of image analysis. Finally, we conclude this paper with some discussions.Comment: To appear in ACM Computing Survey

    Nonconvex and Nonsmooth Sparse Optimization via Adaptively Iterative Reweighted Methods

    Full text link
    We present a general formulation of nonconvex and nonsmooth sparse optimization problems with a convexset constraint, which takes into account most existing types of nonconvex sparsity-inducing terms. It thus brings strong applicability to a wide range of applications. We further design a general algorithmic framework of adaptively iterative reweighted algorithms for solving the nonconvex and nonsmooth sparse optimization problems. This is achieved by solving a sequence of weighted convex penalty subproblems with adaptively updated weights. The first-order optimality condition is then derived and the global convergence results are provided under loose assumptions. This makes our theoretical results a practical tool for analyzing a family of various iteratively reweighted algorithms. In particular, for the iteratively reweighed â„“1\ell_1-algorithm, global convergence analysis is provided for cases with diminishing relaxation parameter. For the iteratively reweighed â„“2\ell_2-algorithm, adaptively decreasing relaxation parameter is applicable and the existence of the cluster point to the algorithm is established. The effectiveness and efficiency of our proposed formulation and the algorithms are demonstrated in numerical experiments in various sparse optimization problems

    Model-free Nonconvex Matrix Completion: Local Minima Analysis and Applications in Memory-efficient Kernel PCA

    Full text link
    This work studies low-rank approximation of a positive semidefinite matrix from partial entries via nonconvex optimization. We characterized how well local-minimum based low-rank factorization approximates a fixed positive semidefinite matrix without any assumptions on the rank-matching, the condition number or eigenspace incoherence parameter. Furthermore, under certain assumptions on rank-matching and well-boundedness of condition numbers and eigenspace incoherence parameters, a corollary of our main theorem improves the state-of-the-art sampling rate results for nonconvex matrix completion with no spurious local minima in Ge et al. [2016, 2017]. In addition, we investigated when the proposed nonconvex optimization results in accurate low-rank approximations even in presence of large condition numbers, large incoherence parameters, or rank mismatching. We also propose to apply the nonconvex optimization to memory-efficient Kernel PCA. Compared to the well-known Nystr\"{o}m methods, numerical experiments indicate that the proposed nonconvex optimization approach yields more stable results in both low-rank approximation and clustering.Comment: Main theorem improve

    The proximal point method revisited

    Full text link
    In this short survey, I revisit the role of the proximal point method in large scale optimization. I focus on three recent examples: a proximally guided subgradient method for weakly convex stochastic approximation, the prox-linear algorithm for minimizing compositions of convex functions and smooth maps, and Catalyst generic acceleration for regularized Empirical Risk Minimization.Comment: 11 pages, submitted to SIAG/OPT Views and New

    Global Optimality in Low-rank Matrix Optimization

    Full text link
    This paper considers the minimization of a general objective function f(X)f(X) over the set of rectangular n×mn\times m matrices that have rank at most rr. To reduce the computational burden, we factorize the variable XX into a product of two smaller matrices and optimize over these two matrices instead of XX. Despite the resulting nonconvexity, recent studies in matrix completion and sensing have shown that the factored problem has no spurious local minima and obeys the so-called strict saddle property (the function has a directional negative curvature at all critical points but local minima). We analyze the global geometry for a general and yet well-conditioned objective function f(X)f(X) whose restricted strong convexity and restricted strong smoothness constants are comparable. In particular, we show that the reformulated objective function has no spurious local minima and obeys the strict saddle property. These geometric properties imply that a number of iterative optimization algorithms (such as gradient descent) can provably solve the factored problem with global convergence

    Nonconvex Sparse Learning via Stochastic Optimization with Progressive Variance Reduction

    Full text link
    We propose a stochastic variance reduced optimization algorithm for solving sparse learning problems with cardinality constraints. Sufficient conditions are provided, under which the proposed algorithm enjoys strong linear convergence guarantees and optimal estimation accuracy in high dimensions. We further extend the proposed algorithm to an asynchronous parallel variant with a near linear speedup. Numerical experiments demonstrate the efficiency of our algorithm in terms of both parameter estimation and computational performance

    Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset

    Full text link
    Recent research on problem formulations based on decomposition into low-rank plus sparse matrices shows a suitable framework to separate moving objects from the background. The most representative problem formulation is the Robust Principal Component Analysis (RPCA) solved via Principal Component Pursuit (PCP) which decomposes a data matrix in a low-rank matrix and a sparse matrix. However, similar robust implicit or explicit decompositions can be made in the following problem formulations: Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank Minimization (RLRM). The main goal of these similar problem formulations is to obtain explicitly or implicitly a decomposition into low-rank matrix plus additive matrices. In this context, this work aims to initiate a rigorous and comprehensive review of the similar problem formulations in robust subspace learning and tracking based on decomposition into low-rank plus additive matrices for testing and ranking existing algorithms for background/foreground separation. For this, we first provide a preliminary review of the recent developments in the different problem formulations which allows us to define a unified view that we called Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we examine carefully each method in each robust subspace learning/tracking frameworks with their decomposition, their loss functions, their optimization problem and their solvers. Furthermore, we investigate if incremental algorithms and real-time implementations can be achieved for background/foreground separation. Finally, experimental results on a large-scale dataset called Background Models Challenge (BMC 2012) show the comparative performance of 32 different robust subspace learning/tracking methods.Comment: 121 pages, 5 figures, submitted to Computer Science Review. arXiv admin note: text overlap with arXiv:1312.7167, arXiv:1109.6297, arXiv:1207.3438, arXiv:1105.2126, arXiv:1404.7592, arXiv:1210.0805, arXiv:1403.8067 by other authors, Computer Science Review, November 201

    Simple and practical algorithms for â„“p\ell_p-norm low-rank approximation

    Full text link
    We propose practical algorithms for entrywise ℓp\ell_p-norm low-rank approximation, for p=1p = 1 or p=∞p = \infty. The proposed framework, which is non-convex and gradient-based, is easy to implement and typically attains better approximations, faster, than state of the art. From a theoretical standpoint, we show that the proposed scheme can attain (1+ε)(1 + \varepsilon)-OPT approximations. Our algorithms are not hyperparameter-free: they achieve the desiderata only assuming algorithm's hyperparameters are known a priori---or are at least approximable. I.e., our theory indicates what problem quantities need to be known, in order to get a good solution within polynomial time, and does not contradict to recent inapproximabilty results, as in [46].Comment: 16 pages, 11 figures, to appear in UAI 201
    • …
    corecore