20,375 research outputs found

    A Survey of Deep Facial Attribute Analysis

    Full text link
    Facial attribute analysis has received considerable attention when deep learning techniques made remarkable breakthroughs in this field over the past few years. Deep learning based facial attribute analysis consists of two basic sub-issues: facial attribute estimation (FAE), which recognizes whether facial attributes are present in given images, and facial attribute manipulation (FAM), which synthesizes or removes desired facial attributes. In this paper, we provide a comprehensive survey of deep facial attribute analysis from the perspectives of both estimation and manipulation. First, we summarize a general pipeline that deep facial attribute analysis follows, which comprises two stages: data preprocessing and model construction. Additionally, we introduce the underlying theories of this two-stage pipeline for both FAE and FAM. Second, the datasets and performance metrics commonly used in facial attribute analysis are presented. Third, we create a taxonomy of state-of-the-art methods and review deep FAE and FAM algorithms in detail. Furthermore, several additional facial attribute related issues are introduced, as well as relevant real-world applications. Finally, we discuss possible challenges and promising future research directions.Comment: submitted to International Journal of Computer Vision (IJCV

    Connecting the Dots Between MLE and RL for Sequence Prediction

    Full text link
    Sequence prediction models can be learned from example sequences with a variety of training algorithms. Maximum likelihood learning is simple and efficient, yet can suffer from compounding error at test time. Reinforcement learning such as policy gradient addresses the issue but can have prohibitively poor exploration efficiency. A rich set of other algorithms such as RAML, SPG, and data noising, have also been developed from different perspectives. This paper establishes a formal connection between these algorithms. We present a generalized entropy regularized policy optimization formulation, and show that the apparently distinct algorithms can all be reformulated as special instances of the framework, with the only difference being the configurations of a reward function and a couple of hyperparameters. The unified interpretation offers a systematic view of the varying properties of exploration and learning efficiency. Besides, inspired from the framework, we present a new algorithm that dynamically interpolates among the family of algorithms for scheduled sequence model learning. Experiments on machine translation, text summarization, and game imitation learning demonstrate the superiority of the proposed algorithm.Comment: Major revision. The first two authors contributed equall

    Multi-Scale Video Frame-Synthesis Network with Transitive Consistency Loss

    Full text link
    Traditional approaches to interpolate/extrapolate frames in a video sequence require accurate pixel correspondences between images, e.g., using optical flow. Their results stem on the accuracy of optical flow estimation, and could generate heavy artifacts when flow estimation failed. Recently methods using auto-encoder has shown impressive progress, however they are usually trained for specific interpolation/extrapolation settings and lack of flexibility and In order to reduce these limitations, we propose a unified network to parameterize the interest frame position and therefore infer interpolate/extrapolate frames within the same framework. To achieve this, we introduce a transitive consistency loss to better regularize the network. We adopt a multi-scale structure for the network so that the parameters can be shared across multi-layers. Our approach avoids expensive global optimization of optical flow methods, and is efficient and flexible for video interpolation/extrapolation applications. Experimental results have shown that our method performs favorably against state-of-the-art methods

    FingerNet: An Unified Deep Network for Fingerprint Minutiae Extraction

    Full text link
    Minutiae extraction is of critical importance in automated fingerprint recognition. Previous works on rolled/slap fingerprints failed on latent fingerprints due to noisy ridge patterns and complex background noises. In this paper, we propose a new way to design deep convolutional network combining domain knowledge and the representation ability of deep learning. In terms of orientation estimation, segmentation, enhancement and minutiae extraction, several typical traditional methods performed well on rolled/slap fingerprints are transformed into convolutional manners and integrated as an unified plain network. We demonstrate that this pipeline is equivalent to a shallow network with fixed weights. The network is then expanded to enhance its representation ability and the weights are released to learn complex background variance from data, while preserving end-to-end differentiability. Experimental results on NIST SD27 latent database and FVC 2004 slap database demonstrate that the proposed algorithm outperforms the state-of-the-art minutiae extraction algorithms. Code is made publicly available at: https://github.com/felixTY/FingerNet

    Quality-aware Unpaired Image-to-Image Translation

    Full text link
    Generative Adversarial Networks (GANs) have been widely used for the image-to-image translation task. While these models rely heavily on the labeled image pairs, recently some GAN variants have been proposed to tackle the unpaired image translation task. These models exploited supervision at the domain level with a reconstruction process for unpaired image translation. On the other hand, parallel works have shown that leveraging perceptual loss functions based on high level deep features could enhance the generated image quality. Nevertheless, as these GAN-based models either depended on the pretrained deep network structure or relied on the labeled image pairs, they could not be directly applied to the unpaired image translation task. Moreover, despite the improvement of the introduced perceptual losses from deep neural networks, few researchers have explored the possibility of improving the generated image quality from classical image quality measures. To tackle the above two challenges, in this paper, we propose a unified quality-aware GAN-based framework for unpaired image-to-image translation, where a quality-aware loss is explicitly incorporated by comparing each source image and the reconstructed image at the domain level. Specifically, we design two detailed implementations of the quality loss. The first method is based on a classical image quality assessment measure by defining a classical quality-aware loss. The second method proposes an adaptive deep network based loss. Finally, extensive experimental results on many real-world datasets clearly show the quality improvement of our proposed framework, and the superiority of leveraging classical image quality measures for unpaired image translation compared to the deep network based model.Comment: IEEE Transactions on Multimedi

    The NLP Engine: A Universal Turing Machine for NLP

    Full text link
    It is commonly accepted that machine translation is a more complex task than part of speech tagging. But how much more complex? In this paper we make an attempt to develop a general framework and methodology for computing the informational and/or processing complexity of NLP applications and tasks. We define a universal framework akin to a Turning Machine that attempts to fit (most) NLP tasks into one paradigm. We calculate the complexities of various NLP tasks using measures of Shannon Entropy, and compare `simple' ones such as part of speech tagging to `complex' ones such as machine translation. This paper provides a first, though far from perfect, attempt to quantify NLP tasks under a uniform paradigm. We point out current deficiencies and suggest some avenues for fruitful research

    Neural Approaches to Conversational AI

    Full text link
    The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.Comment: Foundations and Trends in Information Retrieval (95 pages

    Mix and match networks: cross-modal alignment for zero-pair image-to-image translation

    Full text link
    This paper addresses the problem of inferring unseen cross-modal image-to-image translations between multiple modalities. We assume that only some of the pairwise translations have been seen (i.e. trained) and infer the remaining unseen translations (where training pairs are not available). We propose mix and match networks, an approach where multiple encoders and decoders are aligned in such a way that the desired translation can be obtained by simply cascading the source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). The main challenge lies in the alignment of the latent representations at the bottlenecks of encoder-decoder pairs. We propose an architecture with several tools to encourage alignment, including autoencoders and robust side information and latent consistency losses. We show the benefits of our approach in terms of effectiveness and scalability compared with other pairwise image-to-image translation approaches. We also propose zero-pair cross-modal image translation, a challenging setting where the objective is inferring semantic segmentation from depth (and vice-versa) without explicit segmentation-depth pairs, and only from two (disjoint) segmentation-RGB and depth-RGB training sets. We observe that a certain part of the shared information between unseen modalities might not be reachable, so we further propose a variant that leverages pseudo-pairs which allows us to exploit this shared information between the unseen modalities.Comment: Accepted by IJC

    The USFD Spoken Language Translation System for IWSLT 2014

    Full text link
    The University of Sheffield (USFD) participated in the International Workshop for Spoken Language Translation (IWSLT) in 2014. In this paper, we will introduce the USFD SLT system for IWSLT. Automatic speech recognition (ASR) is achieved by two multi-pass deep neural network systems with adaptation and rescoring techniques. Machine translation (MT) is achieved by a phrase-based system. The USFD primary system incorporates state-of-the-art ASR and MT techniques and gives a BLEU score of 23.45 and 14.75 on the English-to-French and English-to-German speech-to-text translation task with the IWSLT 2014 data. The USFD contrastive systems explore the integration of ASR and MT by using a quality estimation system to rescore the ASR outputs, optimising towards better translation. This gives a further 0.54 and 0.26 BLEU improvement respectively on the IWSLT 2012 and 2014 evaluation data

    When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey

    Full text link
    With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding, decision-making and control for autonomous systems have improved significantly in the past years. When autonomous systems consider the performance of accuracy and transferability, several AI methods, like adversarial learning, reinforcement learning (RL) and meta-learning, show their powerful performance. Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability. Accuracy means that a well-trained model shows good results during the testing phase, in which the testing set shares a same task or a data distribution with the training set. Transferability means that when a well-trained model is transferred to other testing domains, the accuracy is still good. Firstly, we introduce some basic concepts of transfer learning and then present some preliminaries of adversarial learning, RL and meta-learning. Secondly, we focus on reviewing the accuracy or transferability or both of them to show the advantages of adversarial learning, like generative adversarial networks (GANs), in typical computer vision tasks in autonomous systems, including image style transfer, image superresolution, image deblurring/dehazing/rain removal, semantic segmentation, depth estimation, pedestrian detection and person re-identification (re-ID). Then, we further review the performance of RL and meta-learning from the aspects of accuracy or transferability or both of them in autonomous systems, involving pedestrian tracking, robot navigation and robotic manipulation. Finally, we discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems
    corecore