46,220 research outputs found

    Estimation of Markov Chain via Rank-Constrained Likelihood

    Full text link
    This paper studies the estimation of low-rank Markov chains from empirical trajectories. We propose a non-convex estimator based on rank-constrained likelihood maximization. Statistical upper bounds are provided for the Kullback-Leiber divergence and the â„“2\ell_2 risk between the estimator and the true transition matrix. The estimator reveals a compressed state space of the Markov chain. We also develop a novel DC (difference of convex function) programming algorithm to tackle the rank-constrained non-smooth optimization problem. Convergence results are established. Experiments show that the proposed estimator achieves better empirical performance than other popular approaches.Comment: Accepted at ICML 201

    DMFSGD: A Decentralized Matrix Factorization Algorithm for Network Distance Prediction

    Full text link
    The knowledge of end-to-end network distances is essential to many Internet applications. As active probing of all pairwise distances is infeasible in large-scale networks, a natural idea is to measure a few pairs and to predict the other ones without actually measuring them. This paper formulates the distance prediction problem as matrix completion where unknown entries of an incomplete matrix of pairwise distances are to be predicted. The problem is solvable because strong correlations among network distances exist and cause the constructed distance matrix to be low rank. The new formulation circumvents the well-known drawbacks of existing approaches based on Euclidean embedding. A new algorithm, so-called Decentralized Matrix Factorization by Stochastic Gradient Descent (DMFSGD), is proposed to solve the network distance prediction problem. By letting network nodes exchange messages with each other, the algorithm is fully decentralized and only requires each node to collect and to process local measurements, with neither explicit matrix constructions nor special nodes such as landmarks and central servers. In addition, we compared comprehensively matrix factorization and Euclidean embedding to demonstrate the suitability of the former on network distance prediction. We further studied the incorporation of a robust loss function and of non-negativity constraints. Extensive experiments on various publicly-available datasets of network delays show not only the scalability and the accuracy of our approach but also its usability in real Internet applications.Comment: submitted to IEEE/ACM Transactions on Networking on Nov. 201
    • …
    corecore