2,935 research outputs found

    Automated Machine Learning for Deep Recommender Systems: A Survey

    Full text link
    Deep recommender systems (DRS) are critical for current commercial online service providers, which address the issue of information overload by recommending items that are tailored to the user's interests and preferences. They have unprecedented feature representations effectiveness and the capacity of modeling the non-linear relationships between users and items. Despite their advancements, DRS models, like other deep learning models, employ sophisticated neural network architectures and other vital components that are typically designed and tuned by human experts. This article will give a comprehensive summary of automated machine learning (AutoML) for developing DRS models. We first provide an overview of AutoML for DRS models and the related techniques. Then we discuss the state-of-the-art AutoML approaches that automate the feature selection, feature embeddings, feature interactions, and system design in DRS. Finally, we discuss appealing research directions and summarize the survey

    Reviewing Developments of Graph Convolutional Network Techniques for Recommendation Systems

    Full text link
    The Recommender system is a vital information service on today's Internet. Recently, graph neural networks have emerged as the leading approach for recommender systems. We try to review recent literature on graph neural network-based recommender systems, covering the background and development of both recommender systems and graph neural networks. Then categorizing recommender systems by their settings and graph neural networks by spectral and spatial models, we explore the motivation behind incorporating graph neural networks into recommender systems. We also analyze challenges and open problems in graph construction, embedding propagation and aggregation, and computation efficiency. This guides us to better explore the future directions and developments in this domain.Comment: arXiv admin note: text overlap with arXiv:2103.08976 by other author
    • …
    corecore