4,413 research outputs found

    Transfer Metric Learning: Algorithms, Applications and Outlooks

    Full text link
    Distance metric learning (DML) aims to find an appropriate way to reveal the underlying data relationship. It is critical in many machine learning, pattern recognition and data mining algorithms, and usually require large amount of label information (such as class labels or pair/triplet constraints) to achieve satisfactory performance. However, the label information may be insufficient in real-world applications due to the high-labeling cost, and DML may fail in this case. Transfer metric learning (TML) is able to mitigate this issue for DML in the domain of interest (target domain) by leveraging knowledge/information from other related domains (source domains). Although achieved a certain level of development, TML has limited success in various aspects such as selective transfer, theoretical understanding, handling complex data, big data and extreme cases. In this survey, we present a systematic review of the TML literature. In particular, we group TML into different categories according to different settings and metric transfer strategies, such as direct metric approximation, subspace approximation, distance approximation, and distribution approximation. A summarization and insightful discussion of the various TML approaches and their applications will be presented. Finally, we indicate some challenges and provide possible future directions.Comment: 14 pages, 5 figure

    Transfer Adaptation Learning: A Decade Survey

    Full text link
    The world we see is ever-changing and it always changes with people, things, and the environment. Domain is referred to as the state of the world at a certain moment. A research problem is characterized as transfer adaptation learning (TAL) when it needs knowledge correspondence between different moments/domains. Conventional machine learning aims to find a model with the minimum expected risk on test data by minimizing the regularized empirical risk on the training data, which, however, supposes that the training and test data share similar joint probability distribution. TAL aims to build models that can perform tasks of target domain by learning knowledge from a semantic related but distribution different source domain. It is an energetic research filed of increasing influence and importance, which is presenting a blowout publication trend. This paper surveys the advances of TAL methodologies in the past decade, and the technical challenges and essential problems of TAL have been observed and discussed with deep insights and new perspectives. Broader solutions of transfer adaptation learning being created by researchers are identified, i.e., instance re-weighting adaptation, feature adaptation, classifier adaptation, deep network adaptation and adversarial adaptation, which are beyond the early semi-supervised and unsupervised split. The survey helps researchers rapidly but comprehensively understand and identify the research foundation, research status, theoretical limitations, future challenges and under-studied issues (universality, interpretability, and credibility) to be broken in the field toward universal representation and safe applications in open-world scenarios.Comment: 26 pages, 4 figure

    Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels

    Full text link
    In this paper, we develop an approach to exploiting kernel methods with manifold-valued data. In many computer vision problems, the data can be naturally represented as points on a Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, usual Euclidean computer vision and machine learning algorithms yield inferior results on such data. In this paper, we define Gaussian radial basis function (RBF)-based positive definite kernels on manifolds that permit us to embed a given manifold with a corresponding metric in a high dimensional reproducing kernel Hilbert space. These kernels make it possible to utilize algorithms developed for linear spaces on nonlinear manifold-valued data. Since the Gaussian RBF defined with any given metric is not always positive definite, we present a unified framework for analyzing the positive definiteness of the Gaussian RBF on a generic metric space. We then use the proposed framework to identify positive definite kernels on two specific manifolds commonly encountered in computer vision: the Riemannian manifold of symmetric positive definite matrices and the Grassmann manifold, i.e., the Riemannian manifold of linear subspaces of a Euclidean space. We show that many popular algorithms designed for Euclidean spaces, such as support vector machines, discriminant analysis and principal component analysis can be generalized to Riemannian manifolds with the help of such positive definite Gaussian kernels

    Toward Multi-Diversified Ensemble Clustering of High-Dimensional Data: From Subspaces to Metrics and Beyond

    Full text link
    The rapid emergence of high-dimensional data in various areas has brought new challenges to current ensemble clustering research. To deal with the curse of dimensionality, recently considerable efforts in ensemble clustering have been made by incorporating different subspace-based techniques. However, besides the emphasis on subspaces, rather limited attention has been paid to the potential diversity in similarity/dissimilarity metrics. It remains a surprisingly open problem in ensemble clustering how to create and aggregate a large population of diversified metrics, and furthermore, how to jointly investigate the multi-level diversity in the large populations of metrics, subspaces, and clusters in a unified framework. To tackle this problem, this paper proposes a novel multi-diversified ensemble clustering approach. In particular, we create a large number of diversified metrics by randomizing a scaled exponential similarity kernel, which are then coupled with random subspaces to form a large set of metric-subspace pairs. Based on the similarity matrices derived from these metric-subspace pairs, an ensemble of diversified base clusterings can thereby be constructed. Thereafter, an entropy-based criterion is adopted to explore the cluster-wise diversity in ensembles. By jointly exploiting the multi-level diversity in metrics, subspaces, and clusters, three specific ensemble clustering algorithms are finally presented. Experimental results on 30 real-world high-dimensional datasets (including 18 cancer gene expression datasets and 12 image/speech datasets) have demonstrated the superiority of the proposed algorithms over the state-of-the-art

    An Automatic System for Unconstrained Video-Based Face Recognition

    Full text link
    Although deep learning approaches have achieved performance surpassing humans for still image-based face recognition, unconstrained video-based face recognition is still a challenging task due to large volume of data to be processed and intra/inter-video variations on pose, illumination, occlusion, scene, blur, video quality, etc. In this work, we consider challenging scenarios for unconstrained video-based face recognition from multiple-shot videos and surveillance videos with low-quality frames. To handle these problems, we propose a robust and efficient system for unconstrained video-based face recognition, which is composed of modules for face/fiducial detection, face association, and face recognition. First, we use multi-scale single-shot face detectors to efficiently localize faces in videos. The detected faces are then grouped respectively through carefully designed face association methods, especially for multi-shot videos. Finally, the faces are recognized by the proposed face matcher based on an unsupervised subspace learning approach and a subspace-to-subspace similarity metric. Extensive experiments on challenging video datasets, such as Multiple Biometric Grand Challenge (MBGC), Face and Ocular Challenge Series (FOCS), IARPA Janus Surveillance Video Benchmark (IJB-S) for low-quality surveillance videos and IARPA JANUS Benchmark B (IJB-B) for multiple-shot videos, demonstrate that the proposed system can accurately detect and associate faces from unconstrained videos and effectively learn robust and discriminative features for recognition

    Tensor Representation and Manifold Learning Methods for Remote Sensing Images

    Full text link
    One of the main purposes of earth observation is to extract interested information and knowledge from remote sensing (RS) images with high efficiency and accuracy. However, with the development of RS technologies, RS system provide images with higher spatial and temporal resolution and more spectral channels than before, and it is inefficient and almost impossible to manually interpret these images. Thus, it is of great interests to explore automatic and intelligent algorithms to quickly process such massive RS data with high accuracy. This thesis targets to develop some efficient information extraction algorithms for RS images, by relying on the advanced technologies in machine learning. More precisely, we adopt the manifold learning algorithms as the mainline and unify the regularization theory, tensor-based method, sparse learning and transfer learning into the same framework. The main contributions of this thesis are as follows.Comment: 7 page

    A Comprehensive Survey on Cross-modal Retrieval

    Full text link
    In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. Various methods have been proposed to deal with such a problem. In this paper, we first review a number of representative methods for cross-modal retrieval and classify them into two main groups: 1) real-valued representation learning, and 2) binary representation learning. Real-valued representation learning methods aim to learn real-valued common representations for different modalities of data. To speed up the cross-modal retrieval, a number of binary representation learning methods are proposed to map different modalities of data into a common Hamming space. Then, we introduce several multimodal datasets in the community, and show the experimental results on two commonly used multimodal datasets. The comparison reveals the characteristic of different kinds of cross-modal retrieval methods, which is expected to benefit both practical applications and future research. Finally, we discuss open problems and future research directions.Comment: 20 pages, 11 figures, 9 table

    A Unified Semi-Supervised Dimensionality Reduction Framework for Manifold Learning

    Full text link
    We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of manifolds. Our framework offers simple views, explains relationships among existing frameworks and provides further extensions which can improve existing algorithms. Furthermore, a new semi-supervised kernelization framework called ``KPCA trick'' is proposed to handle non-linear problems.Comment: 22 pages, 9 figure

    Learning to Hash for Indexing Big Data - A Survey

    Full text link
    The explosive growth in big data has attracted much attention in designing efficient indexing and search methods recently. In many critical applications such as large-scale search and pattern matching, finding the nearest neighbors to a query is a fundamental research problem. However, the straightforward solution using exhaustive comparison is infeasible due to the prohibitive computational complexity and memory requirement. In response, Approximate Nearest Neighbor (ANN) search based on hashing techniques has become popular due to its promising performance in both efficiency and accuracy. Prior randomized hashing methods, e.g., Locality-Sensitive Hashing (LSH), explore data-independent hash functions with random projections or permutations. Although having elegant theoretic guarantees on the search quality in certain metric spaces, performance of randomized hashing has been shown insufficient in many real-world applications. As a remedy, new approaches incorporating data-driven learning methods in development of advanced hash functions have emerged. Such learning to hash methods exploit information such as data distributions or class labels when optimizing the hash codes or functions. Importantly, the learned hash codes are able to preserve the proximity of neighboring data in the original feature spaces in the hash code spaces. The goal of this paper is to provide readers with systematic understanding of insights, pros and cons of the emerging techniques. We provide a comprehensive survey of the learning to hash framework and representative techniques of various types, including unsupervised, semi-supervised, and supervised. In addition, we also summarize recent hashing approaches utilizing the deep learning models. Finally, we discuss the future direction and trends of research in this area

    A Kernel Classification Framework for Metric Learning

    Full text link
    Learning a distance metric from the given training samples plays a crucial role in many machine learning tasks, and various models and optimization algorithms have been proposed in the past decade. In this paper, we generalize several state-of-the-art metric learning methods, such as large margin nearest neighbor (LMNN) and information theoretic metric learning (ITML), into a kernel classification framework. First, doublets and triplets are constructed from the training samples, and a family of degree-2 polynomial kernel functions are proposed for pairs of doublets or triplets. Then, a kernel classification framework is established, which can not only generalize many popular metric learning methods such as LMNN and ITML, but also suggest new metric learning methods, which can be efficiently implemented, interestingly, by using the standard support vector machine (SVM) solvers. Two novel metric learning methods, namely doublet-SVM and triplet-SVM, are then developed under the proposed framework. Experimental results show that doublet-SVM and triplet-SVM achieve competitive classification accuracies with state-of-the-art metric learning methods such as ITML and LMNN but with significantly less training time.Comment: 11 pages, 7 figure
    • …
    corecore