1,646 research outputs found

    Generalized Sparse and Low-Rank Optimization for Ultra-Dense Networks

    Full text link
    Ultra-dense network (UDN) is a promising technology to further evolve wireless networks and meet the diverse performance requirements of 5G networks. With abundant access points, each with communication, computation and storage resources, UDN brings unprecedented benefits, including significant improvement in network spectral efficiency and energy efficiency, greatly reduced latency to enable novel mobile applications, and the capability of providing massive access for Internet of Things (IoT) devices. However, such great promises come with formidable research challenges. To design and operate such complex networks with various types of resources, efficient and innovative methodologies will be needed. This motivates the recent introduction of highly structured and generalizable models for network optimization. In this article, we present some recently proposed large-scale sparse and low-rank frameworks for optimizing UDNs, supported by various motivating applications. A special attention is paid on algorithmic approaches to deal with nonconvex objective functions and constraints, as well as computational scalability.Comment: This paper has been accepted by IEEE Communication Magazine, Special Issue on Heterogeneous Ultra Dense Network

    Towards Faster Rates and Oracle Property for Low-Rank Matrix Estimation

    Full text link
    We present a unified framework for low-rank matrix estimation with nonconvex penalties. We first prove that the proposed estimator attains a faster statistical rate than the traditional low-rank matrix estimator with nuclear norm penalty. Moreover, we rigorously show that under a certain condition on the magnitude of the nonzero singular values, the proposed estimator enjoys oracle property (i.e., exactly recovers the true rank of the matrix), besides attaining a faster rate. As far as we know, this is the first work that establishes the theory of low-rank matrix estimation with nonconvex penalties, confirming the advantages of nonconvex penalties for matrix completion. Numerical experiments on both synthetic and real world datasets corroborate our theory.Comment: 29 pages, 1 figure, 2 table

    Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation

    Full text link
    Low-rank modeling plays a pivotal role in signal processing and machine learning, with applications ranging from collaborative filtering, video surveillance, medical imaging, to dimensionality reduction and adaptive filtering. Many modern high-dimensional data and interactions thereof can be modeled as lying approximately in a low-dimensional subspace or manifold, possibly with additional structures, and its proper exploitations lead to significant reduction of costs in sensing, computation and storage. In recent years, there is a plethora of progress in understanding how to exploit low-rank structures using computationally efficient procedures in a provable manner, including both convex and nonconvex approaches. On one side, convex relaxations such as nuclear norm minimization often lead to statistically optimal procedures for estimating low-rank matrices, where first-order methods are developed to address the computational challenges; on the other side, there is emerging evidence that properly designed nonconvex procedures, such as projected gradient descent, often provide globally optimal solutions with a much lower computational cost in many problems. This survey article will provide a unified overview of these recent advances on low-rank matrix estimation from incomplete measurements. Attention is paid to rigorous characterization of the performance of these algorithms, and to problems where the low-rank matrix have additional structural properties that require new algorithmic designs and theoretical analysis.Comment: To appear in IEEE Signal Processing Magazin

    Estimating Differential Latent Variable Graphical Models with Applications to Brain Connectivity

    Full text link
    Differential graphical models are designed to represent the difference between the conditional dependence structures of two groups, thus are of particular interest for scientific investigation. Motivated by modern applications, this manuscript considers an extended setting where each group is generated by a latent variable Gaussian graphical model. Due to the existence of latent factors, the differential network is decomposed into sparse and low-rank components, both of which are symmetric indefinite matrices. We estimate these two components simultaneously using a two-stage procedure: (i) an initialization stage, which computes a simple, consistent estimator, and (ii) a convergence stage, implemented using a projected alternating gradient descent algorithm applied to a nonconvex objective, initialized using the output of the first stage. We prove that given the initialization, the estimator converges linearly with a nontrivial, minimax optimal statistical error. Experiments on synthetic and real data illustrate that the proposed nonconvex procedure outperforms existing methods.Comment: 60 page

    Model-free Nonconvex Matrix Completion: Local Minima Analysis and Applications in Memory-efficient Kernel PCA

    Full text link
    This work studies low-rank approximation of a positive semidefinite matrix from partial entries via nonconvex optimization. We characterized how well local-minimum based low-rank factorization approximates a fixed positive semidefinite matrix without any assumptions on the rank-matching, the condition number or eigenspace incoherence parameter. Furthermore, under certain assumptions on rank-matching and well-boundedness of condition numbers and eigenspace incoherence parameters, a corollary of our main theorem improves the state-of-the-art sampling rate results for nonconvex matrix completion with no spurious local minima in Ge et al. [2016, 2017]. In addition, we investigated when the proposed nonconvex optimization results in accurate low-rank approximations even in presence of large condition numbers, large incoherence parameters, or rank mismatching. We also propose to apply the nonconvex optimization to memory-efficient Kernel PCA. Compared to the well-known Nystr\"{o}m methods, numerical experiments indicate that the proposed nonconvex optimization approach yields more stable results in both low-rank approximation and clustering.Comment: Main theorem improve

    Low-Rank Modeling and Its Applications in Image Analysis

    Full text link
    Low-rank modeling generally refers to a class of methods that solve problems by representing variables of interest as low-rank matrices. It has achieved great success in various fields including computer vision, data mining, signal processing and bioinformatics. Recently, much progress has been made in theories, algorithms and applications of low-rank modeling, such as exact low-rank matrix recovery via convex programming and matrix completion applied to collaborative filtering. These advances have brought more and more attentions to this topic. In this paper, we review the recent advance of low-rank modeling, the state-of-the-art algorithms, and related applications in image analysis. We first give an overview to the concept of low-rank modeling and challenging problems in this area. Then, we summarize the models and algorithms for low-rank matrix recovery and illustrate their advantages and limitations with numerical experiments. Next, we introduce a few applications of low-rank modeling in the context of image analysis. Finally, we conclude this paper with some discussions.Comment: To appear in ACM Computing Survey

    Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset

    Full text link
    Recent research on problem formulations based on decomposition into low-rank plus sparse matrices shows a suitable framework to separate moving objects from the background. The most representative problem formulation is the Robust Principal Component Analysis (RPCA) solved via Principal Component Pursuit (PCP) which decomposes a data matrix in a low-rank matrix and a sparse matrix. However, similar robust implicit or explicit decompositions can be made in the following problem formulations: Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank Minimization (RLRM). The main goal of these similar problem formulations is to obtain explicitly or implicitly a decomposition into low-rank matrix plus additive matrices. In this context, this work aims to initiate a rigorous and comprehensive review of the similar problem formulations in robust subspace learning and tracking based on decomposition into low-rank plus additive matrices for testing and ranking existing algorithms for background/foreground separation. For this, we first provide a preliminary review of the recent developments in the different problem formulations which allows us to define a unified view that we called Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we examine carefully each method in each robust subspace learning/tracking frameworks with their decomposition, their loss functions, their optimization problem and their solvers. Furthermore, we investigate if incremental algorithms and real-time implementations can be achieved for background/foreground separation. Finally, experimental results on a large-scale dataset called Background Models Challenge (BMC 2012) show the comparative performance of 32 different robust subspace learning/tracking methods.Comment: 121 pages, 5 figures, submitted to Computer Science Review. arXiv admin note: text overlap with arXiv:1312.7167, arXiv:1109.6297, arXiv:1207.3438, arXiv:1105.2126, arXiv:1404.7592, arXiv:1210.0805, arXiv:1403.8067 by other authors, Computer Science Review, November 201

    SOFAR: large-scale association network learning

    Full text link
    Many modern big data applications feature large scale in both numbers of responses and predictors. Better statistical efficiency and scientific insights can be enabled by understanding the large-scale response-predictor association network structures via layers of sparse latent factors ranked by importance. Yet sparsity and orthogonality have been two largely incompatible goals. To accommodate both features, in this paper we suggest the method of sparse orthogonal factor regression (SOFAR) via the sparse singular value decomposition with orthogonality constrained optimization to learn the underlying association networks, with broad applications to both unsupervised and supervised learning tasks such as biclustering with sparse singular value decomposition, sparse principal component analysis, sparse factor analysis, and spare vector autoregression analysis. Exploiting the framework of convexity-assisted nonconvex optimization, we derive nonasymptotic error bounds for the suggested procedure characterizing the theoretical advantages. The statistical guarantees are powered by an efficient SOFAR algorithm with convergence property. Both computational and theoretical advantages of our procedure are demonstrated with several simulation and real data examples

    Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization

    Full text link
    This paper studies noisy low-rank matrix completion: given partial and noisy entries of a large low-rank matrix, the goal is to estimate the underlying matrix faithfully and efficiently. Arguably one of the most popular paradigms to tackle this problem is convex relaxation, which achieves remarkable efficacy in practice. However, the theoretical support of this approach is still far from optimal in the noisy setting, falling short of explaining its empirical success. We make progress towards demystifying the practical efficacy of convex relaxation vis-\`a-vis random noise. When the rank and the condition number of the unknown matrix are bounded by a constant, we demonstrate that the convex programming approach achieves near-optimal estimation errors --- in terms of the Euclidean loss, the entrywise loss, and the spectral norm loss --- for a wide range of noise levels. All of this is enabled by bridging convex relaxation with the nonconvex Burer-Monteiro approach, a seemingly distinct algorithmic paradigm that is provably robust against noise. More specifically, we show that an approximate critical point of the nonconvex formulation serves as an extremely tight approximation of the convex solution, thus allowing us to transfer the desired statistical guarantees of the nonconvex approach to its convex counterpart

    Computation of the Maximum Likelihood estimator in low-rank Factor Analysis

    Full text link
    Factor analysis, a classical multivariate statistical technique is popularly used as a fundamental tool for dimensionality reduction in statistics, econometrics and data science. Estimation is often carried out via the Maximum Likelihood (ML) principle, which seeks to maximize the likelihood under the assumption that the positive definite covariance matrix can be decomposed as the sum of a low rank positive semidefinite matrix and a diagonal matrix with nonnegative entries. This leads to a challenging rank constrained nonconvex optimization problem. We reformulate the low rank ML Factor Analysis problem as a nonlinear nonsmooth semidefinite optimization problem, study various structural properties of this reformulation and propose fast and scalable algorithms based on difference of convex (DC) optimization. Our approach has computational guarantees, gracefully scales to large problems, is applicable to situations where the sample covariance matrix is rank deficient and adapts to variants of the ML problem with additional constraints on the problem parameters. Our numerical experiments demonstrate the significant usefulness of our approach over existing state-of-the-art approaches.Comment: 22 pages, 4 figure
    • …
    corecore