9,964 research outputs found

    The minimum energy expenditure shortest path method

    Get PDF
    This article discusses the addition of an energy parameter to the shortest path execution process; namely, the energy expenditure by a character during execution of the path. Given a simple environment in which a character has the ability to perform actions related to locomotion, such as walking and stair stepping, current techniques execute the shortest path based on the length of the extracted root trajectory. However, actual humans acting in constrained environments do not plan only according to shortest path criterion, they conceptually measure the path that minimizes the amount of energy expenditure. On this basis, it seems that virtual characters should also execute their paths according to the minimization of actual energy expenditure as well. In this article, a simple method that uses a formula for computing vanadium dioxide (VO2VO_2) levels, which is a proxy for the energy expenditure by humans during various activities, is presented. The presented solution could be beneficial in any situation requiring a sophisticated perspective of the path-execution process. Moreover, it can be implemented in almost every path-planning method that has the ability to measure stepping actions or other actions of a virtual character

    Human Computation and Convergence

    Full text link
    Humans are the most effective integrators and producers of information, directly and through the use of information-processing inventions. As these inventions become increasingly sophisticated, the substantive role of humans in processing information will tend toward capabilities that derive from our most complex cognitive processes, e.g., abstraction, creativity, and applied world knowledge. Through the advancement of human computation - methods that leverage the respective strengths of humans and machines in distributed information-processing systems - formerly discrete processes will combine synergistically into increasingly integrated and complex information processing systems. These new, collective systems will exhibit an unprecedented degree of predictive accuracy in modeling physical and techno-social processes, and may ultimately coalesce into a single unified predictive organism, with the capacity to address societies most wicked problems and achieve planetary homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added references to page 1 and 3, and corrected typ

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Mapping e-Science’s Path in the Collaboration Space: Ontological Approach to Monitoring Infrastructure Development

    Get PDF
    In an undertaking such as the U.S. Cyberinfrastructure Initiative, or the UK e-science program, which span many years and comprise a great many projects funded by multiple agencies, it can be very difficult to keep tabs on what everyone is doing. But, it is not impossible. In this paper, we propose the construction of ontologies as a means of monitoring a research program’s portfolio of projects. In particular, we introduce the “virtual laboratory ontology” (VLO) and show how its application to e-Science yields a mapping of the distribution of projects in several dimensions of the “collaboration space.” In this paper, we sketch out a method to induce a project mapping from project descriptions and present the resulting map for the UK e-science program. This paper shows the proposed mapping approach to be informative as well as feasible, and we expect that its further development can prove to be substantively useful for future work in cyber-infrastructure-building.e-Science, virtual laboratory ontology, collaboration space, project mapping, cyber-infrastructure building
    corecore