938 research outputs found

    Heterogeneous substitution systems revisited

    Full text link
    Matthes and Uustalu (TCS 327(1-2):155-174, 2004) presented a categorical description of substitution systems capable of capturing syntax involving binding which is independent of whether the syntax is made up from least or greatest fixed points. We extend this work in two directions: we continue the analysis by creating more categorical structure, in particular by organizing substitution systems into a category and studying its properties, and we develop the proofs of the results of the cited paper and our new ones in UniMath, a recent library of univalent mathematics formalized in the Coq theorem prover.Comment: 24 page

    The exp-log normal form of types

    Get PDF
    Lambda calculi with algebraic data types lie at the core of functional programming languages and proof assistants, but conceal at least two fundamental theoretical problems already in the presence of the simplest non-trivial data type, the sum type. First, we do not know of an explicit and implemented algorithm for deciding the beta-eta-equality of terms---and this in spite of the first decidability results proven two decades ago. Second, it is not clear how to decide when two types are essentially the same, i.e. isomorphic, in spite of the meta-theoretic results on decidability of the isomorphism. In this paper, we present the exp-log normal form of types---derived from the representation of exponential polynomials via the unary exponential and logarithmic functions---that any type built from arrows, products, and sums, can be isomorphically mapped to. The type normal form can be used as a simple heuristic for deciding type isomorphism, thanks to the fact that it is a systematic application of the high-school identities. We then show that the type normal form allows to reduce the standard beta-eta equational theory of the lambda calculus to a specialized version of itself, while preserving the completeness of equality on terms. We end by describing an alternative representation of normal terms of the lambda calculus with sums, together with a Coq-implemented converter into/from our new term calculus. The difference with the only other previously implemented heuristic for deciding interesting instances of eta-equality by Balat, Di Cosmo, and Fiore, is that we exploit the type information of terms substantially and this often allows us to obtain a canonical representation of terms without performing sophisticated term analyses

    General Recursion via Coinductive Types

    Full text link
    A fertile field of research in theoretical computer science investigates the representation of general recursive functions in intensional type theories. Among the most successful approaches are: the use of wellfounded relations, implementation of operational semantics, formalization of domain theory, and inductive definition of domain predicates. Here, a different solution is proposed: exploiting coinductive types to model infinite computations. To every type A we associate a type of partial elements Partial(A), coinductively generated by two constructors: the first, return(a) just returns an element a:A; the second, step(x), adds a computation step to a recursive element x:Partial(A). We show how this simple device is sufficient to formalize all recursive functions between two given types. It allows the definition of fixed points of finitary, that is, continuous, operators. We will compare this approach to different ones from the literature. Finally, we mention that the formalization, with appropriate structural maps, defines a strong monad.Comment: 28 page

    Extended Initiality for Typed Abstract Syntax

    Full text link
    Initial Semantics aims at interpreting the syntax associated to a signature as the initial object of some category of 'models', yielding induction and recursion principles for abstract syntax. Zsid\'o proves an initiality result for simply-typed syntax: given a signature S, the abstract syntax associated to S constitutes the initial object in a category of models of S in monads. However, the iteration principle her theorem provides only accounts for translations between two languages over a fixed set of object types. We generalize Zsid\'o's notion of model such that object types may vary, yielding a larger category, while preserving initiality of the syntax therein. Thus we obtain an extended initiality theorem for typed abstract syntax, in which translations between terms over different types can be specified via the associated category-theoretic iteration operator as an initial morphism. Our definitions ensure that translations specified via initiality are type-safe, i.e. compatible with the typing in the source and target language in the obvious sense. Our main example is given via the propositions-as-types paradigm: we specify propositions and inference rules of classical and intuitionistic propositional logics through their respective typed signatures. Afterwards we use the category--theoretic iteration operator to specify a double negation translation from the former to the latter. A second example is given by the signature of PCF. For this particular case, we formalize the theorem in the proof assistant Coq. Afterwards we specify, via the category-theoretic iteration operator, translations from PCF to the untyped lambda calculus
    corecore