446 research outputs found

    Iterative Singular Tube Hard Thresholding Algorithms for Tensor Completion

    Full text link
    Due to the explosive growth of large-scale data sets, tensors have been a vital tool to analyze and process high-dimensional data. Different from the matrix case, tensor decomposition has been defined in various formats, which can be further used to define the best low-rank approximation of a tensor to significantly reduce the dimensionality for signal compression and recovery. In this paper, we consider the low-rank tensor completion problem. We propose a novel class of iterative singular tube hard thresholding algorithms for tensor completion based on the low-tubal-rank tensor approximation, including basic, accelerated deterministic and stochastic versions. Convergence guarantees are provided along with the special case when the measurements are linear. Numerical experiments on tensor compressive sensing and color image inpainting are conducted to demonstrate convergence and computational efficiency in practice

    A Splitting Augmented Lagrangian Method for Low Multilinear-Rank Tensor Recovery

    Full text link
    This paper studies a recovery task of finding a low multilinear-rank tensor that fulfills some linear constraints in the general settings, which has many applications in computer vision and graphics. This problem is named as the low multilinear-rank tensor recovery problem. The variable splitting technique and convex relaxation technique are used to transform this problem into a tractable constrained optimization problem. Considering the favorable structure of the problem, we develop a splitting augmented Lagrangian method to solve the resulting problem. The proposed algorithm is easily implemented and its convergence can be proved under some conditions. Some preliminary numerical results on randomly generated and real completion problems show that the proposed algorithm is very effective and robust for tackling the low multilinear-rank tensor completion problem
    • …
    corecore