29,558 research outputs found

    On weighted local fitting and its relation to the Horvitz-Thompson estimator

    Get PDF
    Weighting is a largely used concept in many fields of statistics and has frequently caused controversies on its justification and profit. In this paper, we analyze a weighted version of the well-known local polynomial regression estimators, derive their asymptotic bias and variance, and find that the conflict between the asymptotically optimal weighting scheme and the practical requirements has a surprising counterpart in sampling theory, leading us back to the discussion on Basu's (1971) elephants

    Sequential Gaussian Processes for Online Learning of Nonstationary Functions

    Full text link
    Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: i) Conventional GP inference scales O(N3)O(N^{3}) with respect to the number of observations; ii) updating a GP model sequentially is not trivial; and iii) covariance kernels often enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose an online sequential Monte Carlo algorithm to fit mixtures of GPs that capture non-stationary behavior while allowing for fast, distributed inference. By formulating hyperparameter optimization as a multi-armed bandit problem, we accelerate mixing for real time inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the context of prediction for simulated non-stationary data and hospital time series data
    • …
    corecore