2,217 research outputs found

    Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future

    Full text link
    Given the exponential expansion of the internet, the possibilities of security attacks and cybercrimes have increased accordingly. However, poorly implemented security mechanisms in the Internet of Things (IoT) devices make them susceptible to cyberattacks, which can directly affect users. IoT forensics is thus needed for investigating and mitigating such attacks. While many works have examined IoT applications and challenges, only a few have focused on both the forensic and security issues in IoT. Therefore, this paper reviews forensic and security issues associated with IoT in different fields. Future prospects and challenges in IoT research and development are also highlighted. As demonstrated in the literature, most IoT devices are vulnerable to attacks due to a lack of standardized security measures. Unauthorized users could get access, compromise data, and even benefit from control of critical infrastructure. To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system by designing a FLIP-based system that is highly scalable and adaptable. Utilizing a blockchain-based authentication mechanism with a multi-chain structure can provide additional security protection between different trust domains. Deep learning can be utilized to develop a network forensics framework with a high-performing system for detecting and tracking cyberattack incidents. Moreover, researchers should consider limiting the amount of data created and delivered when using big data to develop IoT-based smart systems. The findings of this review will stimulate academics to seek potential solutions for the identified issues, thereby advancing the IoT field.Comment: 77 pages, 5 figures, 5 table

    Few-shot Multi-domain Knowledge Rearming for Context-aware Defence against Advanced Persistent Threats

    Full text link
    Advanced persistent threats (APTs) have novel features such as multi-stage penetration, highly-tailored intention, and evasive tactics. APTs defense requires fusing multi-dimensional Cyber threat intelligence data to identify attack intentions and conducts efficient knowledge discovery strategies by data-driven machine learning to recognize entity relationships. However, data-driven machine learning lacks generalization ability on fresh or unknown samples, reducing the accuracy and practicality of the defense model. Besides, the private deployment of these APT defense models on heterogeneous environments and various network devices requires significant investment in context awareness (such as known attack entities, continuous network states, and current security strategies). In this paper, we propose a few-shot multi-domain knowledge rearming (FMKR) scheme for context-aware defense against APTs. By completing multiple small tasks that are generated from different network domains with meta-learning, the FMKR firstly trains a model with good discrimination and generalization ability for fresh and unknown APT attacks. In each FMKR task, both threat intelligence and local entities are fused into the support/query sets in meta-learning to identify possible attack stages. Secondly, to rearm current security strategies, an finetuning-based deployment mechanism is proposed to transfer learned knowledge into the student model, while minimizing the defense cost. Compared to multiple model replacement strategies, the FMKR provides a faster response to attack behaviors while consuming less scheduling cost. Based on the feedback from multiple real users of the Industrial Internet of Things (IIoT) over 2 months, we demonstrate that the proposed scheme can improve the defense satisfaction rate.Comment: It has been accepted by IEEE SmartNet

    Data Credence in IoR: Vision and Challenges

    Get PDF
    As the Internet of Things permeates every aspect of human life, assessing the credence or integrity of the data generated by "things" becomes a central exercise for making decisions or in auditing events. In this paper, we present a vision of this exercise that includes the notion of data credence, assessing data credence in an efficient manner, and the use of technologies that are on the horizon for the very large scale Internet of Things
    corecore