111,340 research outputs found

    Cheating-Resilient Incentive Scheme for Mobile Crowdsensing Systems

    Full text link
    Mobile Crowdsensing is a promising paradigm for ubiquitous sensing, which explores the tremendous data collected by mobile smart devices with prominent spatial-temporal coverage. As a fundamental property of Mobile Crowdsensing Systems, temporally recruited mobile users can provide agile, fine-grained, and economical sensing labors, however their self-interest cannot guarantee the quality of the sensing data, even when there is a fair return. Therefore, a mechanism is required for the system server to recruit well-behaving users for credible sensing, and to stimulate and reward more contributive users based on sensing truth discovery to further increase credible reporting. In this paper, we develop a novel Cheating-Resilient Incentive (CRI) scheme for Mobile Crowdsensing Systems, which achieves credibility-driven user recruitment and payback maximization for honest users with quality data. Via theoretical analysis, we demonstrate the correctness of our design. The performance of our scheme is evaluated based on extensive realworld trace-driven simulations. Our evaluation results show that our scheme is proven to be effective in terms of both guaranteeing sensing accuracy and resisting potential cheating behaviors, as demonstrated in practical scenarios, as well as those that are intentionally harsher

    Distance Preserving Graph Simplification

    Full text link
    Large graphs are difficult to represent, visualize, and understand. In this paper, we introduce "gate graph" - a new approach to perform graph simplification. A gate graph provides a simplified topological view of the original graph. Specifically, we construct a gate graph from a large graph so that for any "non-local" vertex pair (distance higher than some threshold) in the original graph, their shortest-path distance can be recovered by consecutive "local" walks through the gate vertices in the gate graph. We perform a theoretical investigation on the gate-vertex set discovery problem. We characterize its computational complexity and reveal the upper bound of minimum gate-vertex set using VC-dimension theory. We propose an efficient mining algorithm to discover a gate-vertex set with guaranteed logarithmic bound. We further present a fast technique for pruning redundant edges in a gate graph. The detailed experimental results using both real and synthetic graphs demonstrate the effectiveness and efficiency of our approach.Comment: A short version of this paper will be published for ICDM'11, December 201

    Adam Smith. Skeptical Newtonianism, Disenchanted Republicanism, and the Birth of Social Science

    Get PDF
    Both Adam Smith's epistemology and his politics head to a stalemate. The former is under the opposing pulls of an essentialist ideal of knowledge and of a pragmatist approach to the history of science. The latter still tries to provide a foundation for a natural law, while conceiving it as non-absolute and changeable. The consequences are (i) inability to complete both the political and the epistemological works projected by Smith; (ii) decentralization of the social order, giving rise to several partial orders, such as that of the market

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
    • …
    corecore