4,490 research outputs found

    Complexity Estimates for Two Uncoupling Algorithms

    Get PDF
    Uncoupling algorithms transform a linear differential system of first order into one or several scalar differential equations. We examine two approaches to uncoupling: the cyclic-vector method (CVM) and the Danilevski-Barkatou-Z\"urcher algorithm (DBZ). We give tight size bounds on the scalar equations produced by CVM, and design a fast variant of CVM whose complexity is quasi-optimal with respect to the output size. We exhibit a strong structural link between CVM and DBZ enabling to show that, in the generic case, DBZ has polynomial complexity and that it produces a single equation, strongly related to the output of CVM. We prove that algorithm CVM is faster than DBZ by almost two orders of magnitude, and provide experimental results that validate the theoretical complexity analyses.Comment: To appear in Proceedings of ISSAC'13 (21/01/2013

    Multiplicity Preserving Triangular Set Decomposition of Two Polynomials

    Full text link
    In this paper, a multiplicity preserving triangular set decomposition algorithm is proposed for a system of two polynomials. The algorithm decomposes the variety defined by the polynomial system into unmixed components represented by triangular sets, which may have negative multiplicities. In the bivariate case, we give a complete algorithm to decompose the system into multiplicity preserving triangular sets with positive multiplicities. We also analyze the complexity of the algorithm in the bivariate case. We implement our algorithm and show the effectiveness of the method with extensive experiments.Comment: 18 page

    Irredundant Triangular Decomposition

    Full text link
    Triangular decomposition is a classic, widely used and well-developed way to represent algebraic varieties with many applications. In particular, there exist sharp degree bounds for a single triangular set in terms of intrinsic data of the variety it represents, and powerful randomized algorithms for computing triangular decompositions using Hensel lifting in the zero-dimensional case and for irreducible varieties. However, in the general case, most of the algorithms computing triangular decompositions produce embedded components, which makes it impossible to directly apply the intrinsic degree bounds. This, in turn, is an obstacle for efficiently applying Hensel lifting due to the higher degrees of the output polynomials and the lower probability of success. In this paper, we give an algorithm to compute an irredundant triangular decomposition of an arbitrary algebraic set WW defined by a set of polynomials in C[x_1, x_2, ..., x_n]. Using this irredundant triangular decomposition, we were able to give intrinsic degree bounds for the polynomials appearing in the triangular sets and apply Hensel lifting techniques. Our decomposition algorithm is randomized, and we analyze the probability of success

    Special Algorithm for Stability Analysis of Multistable Biological Regulatory Systems

    Full text link
    We consider the problem of counting (stable) equilibriums of an important family of algebraic differential equations modeling multistable biological regulatory systems. The problem can be solved, in principle, using real quantifier elimination algorithms, in particular real root classification algorithms. However, it is well known that they can handle only very small cases due to the enormous computing time requirements. In this paper, we present a special algorithm which is much more efficient than the general methods. Its efficiency comes from the exploitation of certain interesting structures of the family of differential equations.Comment: 24 pages, 5 algorithms, 10 figure
    corecore