33,851 research outputs found

    Bayesian Detection of Changepoints in Finite-State Markov Chains for Multiple Sequences

    Full text link
    We consider the analysis of sets of categorical sequences consisting of piecewise homogeneous Markov segments. The sequences are assumed to be governed by a common underlying process with segments occurring in the same order for each sequence. Segments are defined by a set of unobserved changepoints where the positions and number of changepoints can vary from sequence to sequence. We propose a Bayesian framework for analyzing such data, placing priors on the locations of the changepoints and on the transition matrices and using Markov chain Monte Carlo (MCMC) techniques to obtain posterior samples given the data. Experimental results using simulated data illustrates how the methodology can be used for inference of posterior distributions for parameters and changepoints, as well as the ability to handle considerable variability in the locations of the changepoints across different sequences. We also investigate the application of the approach to sequential data from two applications involving monsoonal rainfall patterns and branching patterns in trees

    A randomized kinodynamic planner for closed-chain robotic systems

    Get PDF
    Kinodynamic RRT planners are effective tools for finding feasible trajectories in many classes of robotic systems. However, they are hard to apply to systems with closed-kinematic chains, like parallel robots, cooperating arms manipulating an object, or legged robots keeping their feet in contact with the environ- ment. The state space of such systems is an implicitly-defined manifold, which complicates the design of the sampling and steering procedures, and leads to trajectories that drift away from the manifold when standard integration methods are used. To address these issues, this report presents a kinodynamic RRT planner that constructs an atlas of the state space incrementally, and uses this atlas to both generate ran- dom states, and to dynamically steer the system towards such states. The steering method is based on computing linear quadratic regulators from the atlas charts, which greatly increases the planner efficiency in comparison to the standard method that simulates random actions. The atlas also allows the integration of the equations of motion as a differential equation on the state space manifold, which eliminates any drift from such manifold and thus results in accurate trajectories. To the best of our knowledge, this is the first kinodynamic planner that explicitly takes closed kinematic chains into account. We illustrate the performance of the approach in significantly complex tasks, including planar and spatial robots that have to lift or throw a load at a given velocity using torque-limited actuators.Peer ReviewedPreprin

    Bounds on the maximum multiplicity of some common geometric graphs

    Get PDF
    We obtain new lower and upper bounds for the maximum multiplicity of some weighted and, respectively, non-weighted common geometric graphs drawn on n points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of n points in general position can have. In particular, we show that a generalized double chain formed by two almost convex chains admits {\Omega}(8.65^n) different triangulations. This improves the bound {\Omega}(8.48^n) achieved by the double zig-zag chain configuration studied by Aichholzer et al. (ii) We present a new lower bound of {\Omega}(12.00^n) for the number of non-crossing spanning trees of the double chain composed of two convex chains. The previous bound, {\Omega}(10.42^n), stood unchanged for more than 10 years. (iii) Using a recent upper bound of 30^n for the number of triangulations, due to Sharir and Sheffer, we show that n points in the plane in general position admit at most O(68.62^n) non-crossing spanning cycles. (iv) We derive lower bounds for the number of maximum and minimum weighted geometric graphs (matchings, spanning trees, and tours). We show that the number of shortest non-crossing tours can be exponential in n. Likewise, we show that both the number of longest non-crossing tours and the number of longest non-crossing perfect matchings can be exponential in n. Moreover, we show that there are sets of n points in convex position with an exponential number of longest non-crossing spanning trees. For points in convex position we obtain tight bounds for the number of longest and shortest tours. We give a combinatorial characterization of the longest tours, which leads to an O(nlog n) time algorithm for computing them

    The hexagon in the mirror: the three-point function in the SoV representation

    Full text link
    We derive an integral expression for the leading-order type I-I-I three-point functions in the su(2)\mathfrak{su}(2) -sector of N=4\mathcal{N}=4 super Yang-Mills theory, for which no determinant formula is known. To this end, we first map the problem to the partition function of the six vertex model with a hexagonal boundary. The advantage of the six-vertex model expression is that it reveals an extra symmetry of the problem, which is the invariance under 90∘^{\circ} rotation. On the spin-chain side, this corresponds to the exchange of the quantum space and the auxiliary space and is reminiscent of the mirror transformation employed in the worldsheet S-matrix approaches. After the rotation, we then apply Sklyanin's separation of variables (SoV) and obtain a multiple-integral expression of the three-point function. The resulting integrand is expressed in terms of the so-called Baxter polynomials, which is closely related to the quantum spectral curve approach. Along the way, we also derive several new results about the SoV, such as the explicit construction of the basis with twisted boundary conditions and the overlap between the orginal SoV state and the SoV states on the subchains.Comment: 37 pages, 10 figure

    Total variation on a tree

    Full text link
    We consider the problem of minimizing the continuous valued total variation subject to different unary terms on trees and propose fast direct algorithms based on dynamic programming to solve these problems. We treat both the convex and the non-convex case and derive worst case complexities that are equal or better than existing methods. We show applications to total variation based 2D image processing and computer vision problems based on a Lagrangian decomposition approach. The resulting algorithms are very efficient, offer a high degree of parallelism and come along with memory requirements which are only in the order of the number of image pixels.Comment: accepted to SIAM Journal on Imaging Sciences (SIIMS
    • …
    corecore