3 research outputs found

    A Tractable Framework for Coverage Analysis of Cellular-Connected UAV Networks

    Full text link
    Unmanned aerial vehicles (UAVs) have recently found abundant applications in the public and civil domains. To ensure reliable control and navigation, connecting UAVs to controllers via existing cellular network infrastructure, i.e., ground base stations (GBSs), has been proposed as a promising solution. Nevertheless, it is highly challenging to characterize the communication performance of cellular-connected UAVs, due to their unique propagation conditions. This paper proposes a tractable framework for the coverage analysis of cellular-connected UAV networks, which consists of a new blockage model and an effective approach to handle general fading channels. In particular, a line-of-sight (LoS) ball model is proposed to capture the probabilistic propagation in UAV communication systems, and a tractable expression is derived for the Laplace transform of the aggregate interference with general Nakagami fading. This framework leads to a tractable expression for the coverage probability, which in turn helps to investigate the impact of the GBS density. Specifically, a tight lower bound on the optimal density that maximizes the coverage probability is derived. Numerical results show that the proposed LoS ball model is accurate, and the optimal GBS density decreases when the UAV altitude increases.Comment: 6 pages, 4 figures, submitted to the 2nd Workshop on "Integrating UAVs into 5G and Beyond" in ICC 201

    Air-to-Air Communications Beyond 5G: A Novel 3D CoMP Transmission Scheme

    Full text link
    In this paper, a novel 33D cellular model consisting of aerial base stations (aBSs) and aerial user equipments (aUEs) is proposed, by integrating the coordinated multi-point (CoMP) transmission technique with the theory of stochastic geometry. For this new 33D architecture, a tractable model for aBSs' deployment based on the binomial-Delaunay tetrahedralization is developed, which ensures seamless coverage for a given space. In addition, a versatile and practical frequency allocation scheme is designed to eliminate the inter-cell interference effectively. Based on this model, performance metrics including the achievable data rate and coverage probability are derived for two types of aUEs: {\it i)} the general aUE (i.e., an aUE having distinct distances from its serving aBSs) and {\it ii)} the worst-case aUE (i.e., an aUE having equal distances from its serving aBSs). Simulation and numerical results demonstrate that the proposed approach emphatically outperforms the conventional binomial-Voronoi tessellation without CoMP. Insightfully, it provides a similar performance to the binomial-Voronoi tessellation which utilizes the conventional CoMP scheme; yet, introducing a considerably reduced computational complexity and backhaul/signaling overhead.Comment: 16 pages, 18 figures, Accepted by IEEE Transactions on Wireless Communication

    Millimeter-Wave Full-Duplex UAV Relay: Joint Positioning, Beamforming, and Power Control

    Full text link
    In this paper, a full-duplex unmanned aerial vehicle (FD-UAV) relay is employed to increase the communication capacity of millimeter-wave (mmWave) networks. Large antenna arrays are equipped at the source node (SN), destination node (DN), and FD-UAV relay to overcome the high path loss of mmWave channels and to help mitigate the self-interference at the FD-UAV relay. Specifically, we formulate a problem for maximization of the achievable rate from the SN to the DN, where the UAV position, analog beamforming, and power control are jointly optimized. Since the problem is highly non-convex and involves high-dimensional, highly coupled variable vectors, we first obtain the conditional optimal position of the FD-UAV relay for maximization of an approximate upper bound on the achievable rate in closed form, under the assumption of a line-of-sight (LoS) environment and ideal beamforming. Then, the UAV is deployed to the position which is closest to the conditional optimal position and yields LoS paths for both air-to-ground links. Subsequently, we propose an alternating interference suppression (AIS) algorithm for the joint design of the beamforming vectors and the power control variables. In each iteration, the beamforming vectors are optimized for maximization of the beamforming gains of the target signals and the successive reduction of the interference, where the optimal power control variables are obtained in closed form. Our simulation results confirm the superiority of the proposed positioning, beamforming, and power control method compared to three benchmark schemes. Furthermore, our results show that the proposed solution closely approaches a performance upper bound for mmWave FD-UAV systems.Comment: This paper has been accepted by IEEE Journal on Selected Areas in Communications, special issue on Multiple Antenna Technologies for Beyond 5
    corecore