1,194 research outputs found

    A Tractable Fault Detection and Isolation Approach for Nonlinear Systems with Probabilistic Performance

    Full text link
    This article presents a novel perspective along with a scalable methodology to design a fault detection and isolation (FDI) filter for high dimensional nonlinear systems. Previous approaches on FDI problems are either confined to linear systems or they are only applicable to low dimensional dynamics with specific structures. In contrast, shifting attention from the system dynamics to the disturbance inputs, we propose a relaxed design perspective to train a linear residual generator given some statistical information about the disturbance patterns. That is, we propose an optimization-based approach to robustify the filter with respect to finitely many signatures of the nonlinearity. We then invoke recent results in randomized optimization to provide theoretical guarantees for the performance of the proposed filer. Finally, motivated by a cyber-physical attack emanating from the vulnerabilities introduced by the interaction between IT infrastructure and power system, we deploy the developed theoretical results to detect such an intrusion before the functionality of the power system is disrupted

    A scenario approach for non-convex control design

    Full text link
    Randomized optimization is an established tool for control design with modulated robustness. While for uncertain convex programs there exist randomized approaches with efficient sampling, this is not the case for non-convex problems. Approaches based on statistical learning theory are applicable to non-convex problems, but they usually are conservative in terms of performance and require high sample complexity to achieve the desired probabilistic guarantees. In this paper, we derive a novel scenario approach for a wide class of random non-convex programs, with a sample complexity similar to that of uncertain convex programs and with probabilistic guarantees that hold not only for the optimal solution of the scenario program, but for all feasible solutions inside a set of a-priori chosen complexity. We also address measure-theoretic issues for uncertain convex and non-convex programs. Among the family of non-convex control- design problems that can be addressed via randomization, we apply our scenario approach to randomized Model Predictive Control for chance-constrained nonlinear control-affine systems.Comment: Submitted to IEEE Transactions on Automatic Contro

    Privatized distributed anomaly detection for large-scale nonlinear uncertain systems

    Get PDF
    In this article two limitations in current distributed model based approaches for anomaly detection in large-scale uncertain nonlinear systems are addressed. The first limitation regards the high conservativeness of deterministic detection thresholds, against which a novel family of set-based thresholds is proposed. Such set-based thresholds are defined in a way to guarantee robustness in a user-defined probabilistic sense, rather than a deterministic sense. They are obtained by solving a chance-constrained optimization problem, thanks to a randomization technique based on the Scenario Approach. The second limitation regards the requirement, in distributed anomaly detection architectures, for different parties to regularly communicate local measurements. In settings where these parties want to preserve their privacy, communication may be undesirable. In order to preserve privacy and still allow for distributed detection to be implemented, a novel privacy-preserving mechanism is proposed and a so-called privatized communication protocol is introduced. Theoretical guarantees on the achievable level of privacy, along with a characterization of the robustness properties of the proposed distributed threshold set design, taking into account the privatized communication scheme, are provided. Finally, simulation studies are included to illustrate our theoretical developments

    Multiple Faults Estimation in Dynamical Systems: Tractable Design and Performance Bounds

    Get PDF
    In this article, we propose a tractable nonlinear fault isolation filter along with explicit performance bounds for a class of nonlinear dynamical systems. We consider the presence of additive and multiplicative faults, occurring simultaneously and through an identical dynamical relationship, which represents a relevant case in several application domains. The proposed filter architecture combines tools from model-based approaches in the control literature and regression techniques from machine learning. To this end, we view the regression operator through a system-theoretic perspective to develop operator bounds that are then utilized to derive performance bounds for the proposed estimation filter. In the case of constant, simultaneously and identically acting additive and multiplicative faults, it can be shown that the estimation error converges to zero with an exponential rate. The performance of the proposed estimation filter in the presence of incipient faults is validated through an application on the lateral safety systems of SAE level 4 automated vehicles. The numerical results show that the theoretical bounds of this study are indeed close to the actual estimation error.Comment: 24 pages, 8 figure

    Ultra Local Nonlinear Unknown Input Observers for Robust Fault Reconstruction

    Get PDF
    In this paper, we present a methodology for actuator and sensor fault estimation in nonlinear systems. The method consists in augmenting the system dynamics with an approximated ultra-local model (a finite chain of integrators) for the fault vector and constructing a Nonlinear Unknown Input Observer (NUIO) for the augmented dynamics. Then, fault reconstruction is reformulated as a robust state estimation problem in the augmented state (true state plus fault-related state). We provide sufficient conditions that guarantee the existence of the observer and stability of the estimation error dynamics (asymptotic stability of the origin in the absence of faults and ISS guarantees in the faulty case). Then, we cast the synthesis of observer gains as a semidefinite program where we minimize the L2-gain from the model mismatch induced by the approximated fault model to the fault estimation error. Finally, simulations are given to illustrate the performance of the proposed methodology

    Linear Fault Estimators for Nonlinear Systems: An Ultra-Local Model Design

    Full text link
    This paper addresses the problem of robust process and sensor fault reconstruction for nonlinear systems. The proposed method augments the system dynamics with an approximated internal linear model of the combined contribution of known nonlinearities and unknown faults -- leading to an approximated linear model in the augmented state. We exploit the broad modeling power of ultra-local models to characterize this internal dynamics. We use a linear filter to reconstruct the augmented state (simultaneously estimating the state of the original system and the sum of nonlinearities and faults). Having this combined estimate, we can simply subtract the analytic expression of nonlinearities from that of the corresponding estimate to reconstruct the fault vector. Because the nonlinearity does not play a role in the filter dynamics (it is only used as a static nonlinear output to estimate the fault), we can avoid standard restrictive assumptions like globally (one-sided) Lipschitz nonlinearities and/or the need for Lipschitz constants to carry out the filter design. The filter synthesis is posed as a mixed H2/Hinf optimization problem where the effect of disturbances and model mismatches is minimized in the Hinf sense, for an acceptable H2 performance with respect to measurement noise.Comment: arXiv admin note: text overlap with arXiv:2204.0145
    • …
    corecore