1,427 research outputs found

    A Flexible Network Approach to Privacy of Blockchain Transactions

    Full text link
    For preserving privacy, blockchains can be equipped with dedicated mechanisms to anonymize participants. However, these mechanism often take only the abstraction layer of blockchains into account whereas observations of the underlying network traffic can reveal the originator of a transaction request. Previous solutions either provide topological privacy that can be broken by attackers controlling a large number of nodes, or offer strong and cryptographic privacy but are inefficient up to practical unusability. Further, there is no flexible way to trade privacy against efficiency to adjust to practical needs. We propose a novel approach that combines existing mechanisms to have quantifiable and adjustable cryptographic privacy which is further improved by augmented statistical measures that prevent frequent attacks with lower resources. This approach achieves flexibility for privacy and efficency requirements of different blockchain use cases.Comment: 6 pages, 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS

    Network-based indicators of Bitcoin bubbles

    Get PDF
    The functioning of the cryptocurrency Bitcoin relies on the open availability of the entire history of its transactions. This makes it a particularly interesting socio-economic system to analyse from the point of view of network science. Here we analyse the evolution of the network of Bitcoin transactions between users. We achieve this by using the complete transaction history from December 5th 2011 to December 23rd 2013. This period includes three bubbles experienced by the Bitcoin price. In particular, we focus on the global and local structural properties of the user network and their variation in relation to the different period of price surge and decline. By analysing the temporal variation of the heterogeneity of the connectivity patterns we gain insights on the different mechanisms that take place during bubbles, and find that hubs (i.e., the most connected nodes) had a fundamental role in triggering the burst of the second bubble. Finally, we examine the local topological structures of interactions between users, we discover that the relative frequency of triadic interactions experiences a strong change before, during and after a bubble, and suggest that the importance of the hubs grows during the bubble. These results provide further evidence that the behaviour of the hubs during bubbles significantly increases the systemic risk of the Bitcoin network, and discuss the implications on public policy interventions
    corecore