42,412 research outputs found

    A Key Management Protocol for Multiphase Hierarchical Wireless Sensor Networks

    Get PDF
    The security of Wireless Sensor Networks (WSNs) has a direct reliance on secure and efficient key management. This leaves key management as a fundamental research topic in the field of WSNs security. Among the proposed key management schemes for WSNs security, LEAP (Localized Encryption and Authentication Protocol) has been regarded as an efficient protocol over the last years. LEAP supports the establishment of four types of keys. The security of these keys is under the assumption that the initial deployment phase is secure and the initial key is erased from sensor nodes after the initialization phase. However, the initial key is used again for node addition after the initialization phase whereas the new node can be compromised before erasing the key. A time-based key management scheme rethought the security of LEAP. We show the deficiency of the time-based key management scheme and proposed a key management scheme for multi-phase WSNs in this paper. The proposed scheme disperses the damage resulting from the disclosure of the initial key. We show it has better resilience and higher key connectivity probability through the analysis

    Intrusion Prevention and Detection in Wireless Sensor Networks

    Full text link
    The broadcast nature of the transmission medium in wireless sensor networks makes information more vulnerable than in wired applications. In this dissertation we first propose a distributed, deterministic key management protocol designed to satisfy authentication and confidentiality, without the need of a key distribution center. Next we propose Scatter, a secure code authentication scheme for efficient reprogramming sensor networks. Scatter avoids the use of Elliptic Key Cryptography and manages to surpass all previous attempts for secure code dissemination in terms of energy consumption and time efficiency. Next we introduce the problem of intrusion detection in sensor networks. We define the problem formally based on a generic system model and we prove a necessary and sufficient condition for successful detection of the attacker. Finally we present the architecture and implementation of an intrusion detection system which is based on a distributed architecture and it is lightweight enough to run on the nodes

    A Novel Hybrid Protocol and Code Related Information Reconciliation Scheme for Physical Layer Secret Key Generation

    Get PDF
    Wireless networks are vulnerable to various attacks due to their open nature, making them susceptible to eavesdropping and other security threats. Eavesdropping attack takes place at the physical layer. Traditional wireless network security relies on cryptographic techniques to secure data transmissions. However, these techniques may not be suitable for all scenarios, especially in resource-constrained environments such as wireless sensor networks and adhoc networks. In these networks having limited power resources, generating cryptographic keys between mobile entities can be challenging. Also, the cryptographic keys are computationally complex and require key management infrastructure. Physical Layer Key Generation (PLKG) is an emerging solution to address these challenges. It establishes secure communication between two users by taking advantage of the wireless channel's inherent features. PLKG process involves channel probing, quantization, information reconciliation (IR) and privacy amplification to generate symmetric secret key. The researchers have used various PLKG techniques to get the secret key, sTop of Form till they face problems in the IR scheme to obtain symmetric keys between the users who share the same channel for communication. Both the code based and protocol based methods proposed in the literature have advantages and limitations related to their performance parameters such as information leakage, interaction delay and computation complexity. This research work proposes a novel IR mechanism that combines the protocol and code-based error correction methods to obtain reduced Bit Mismatch Rate (BMR), reduced information leakage, reduced interaction delay, and reduced computational time to enhance physical layer secret key's quality. In the proposed research work, the channel samples are generated using the Received Signal Strength (RSS) and Channel Impulse Response (CIR) parameters. These samples are quantized using Vector Quantization with Affinity Propagation Clustering (VQAPC) method to generate the preliminary key. The samples collected by the two users who wish to communicate, (for example Alice and Bob) will be different due to noise in the channel and hardware limitations. Hence their preliminary keys will be different. Removing this discrepancy between Bob's and Alice's initial keys, using novel Hybrid Protocol and Code related Information Reconciliation (HPC-IR) scheme to generate error corrected key, is the most important contribution of this research work. This key is further encoded by the MD5 hash function to generate a final secret key for exchanging information between two users over the wireless channel. It is observed that the proposed HPC-IR scheme achieves BMR of 19.4%, information leakage is 0.002, interaction delay is 0.001 seconds and computation time is 0.02 seconds

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    • …
    corecore