3,038 research outputs found

    A Tight Version of the Gaussian min-max theorem in the Presence of Convexity

    Get PDF
    Gaussian comparison theorems are useful tools in probability theory; they are essential ingredients in the classical proofs of many results in empirical processes and extreme value theory. More recently, they have been used extensively in the analysis of underdetermined linear inverse problems. A prominent role in the study of those problems is played by Gordon's Gaussian min-max theorem. It has been observed that the use of the Gaussian min-max theorem produces results that are often tight. Motivated by recent work due to M. Stojnic, we argue explicitly that the theorem is tight under additional convexity assumptions. To illustrate the usefulness of the result we provide an application example from the field of noisy linear inverse problems

    Isotropically Random Orthogonal Matrices: Performance of LASSO and Minimum Conic Singular Values

    Full text link
    Recently, the precise performance of the Generalized LASSO algorithm for recovering structured signals from compressed noisy measurements, obtained via i.i.d. Gaussian matrices, has been characterized. The analysis is based on a framework introduced by Stojnic and heavily relies on the use of Gordon's Gaussian min-max theorem (GMT), a comparison principle on Gaussian processes. As a result, corresponding characterizations for other ensembles of measurement matrices have not been developed. In this work, we analyze the corresponding performance of the ensemble of isotropically random orthogonal (i.r.o.) measurements. We consider the constrained version of the Generalized LASSO and derive a sharp characterization of its normalized squared error in the large-system limit. When compared to its Gaussian counterpart, our result analytically confirms the superiority in performance of the i.r.o. ensemble. Our second result, derives an asymptotic lower bound on the minimum conic singular values of i.r.o. matrices. This bound is larger than the corresponding bound on Gaussian matrices. To prove our results we express i.r.o. matrices in terms of Gaussians and show that, with some modifications, the GMT framework is still applicable

    Differentially Private Empirical Risk Minimization with Sparsity-Inducing Norms

    Get PDF
    Differential privacy is concerned about the prediction quality while measuring the privacy impact on individuals whose information is contained in the data. We consider differentially private risk minimization problems with regularizers that induce structured sparsity. These regularizers are known to be convex but they are often non-differentiable. We analyze the standard differentially private algorithms, such as output perturbation, Frank-Wolfe and objective perturbation. Output perturbation is a differentially private algorithm that is known to perform well for minimizing risks that are strongly convex. Previous works have derived excess risk bounds that are independent of the dimensionality. In this paper, we assume a particular class of convex but non-smooth regularizers that induce structured sparsity and loss functions for generalized linear models. We also consider differentially private Frank-Wolfe algorithms to optimize the dual of the risk minimization problem. We derive excess risk bounds for both these algorithms. Both the bounds depend on the Gaussian width of the unit ball of the dual norm. We also show that objective perturbation of the risk minimization problems is equivalent to the output perturbation of a dual optimization problem. This is the first work that analyzes the dual optimization problems of risk minimization problems in the context of differential privacy
    • …
    corecore