25,152 research outputs found

    Quantum query complexity of entropy estimation

    Full text link
    Estimation of Shannon and R\'enyi entropies of unknown discrete distributions is a fundamental problem in statistical property testing and an active research topic in both theoretical computer science and information theory. Tight bounds on the number of samples to estimate these entropies have been established in the classical setting, while little is known about their quantum counterparts. In this paper, we give the first quantum algorithms for estimating α\alpha-R\'enyi entropies (Shannon entropy being 1-Renyi entropy). In particular, we demonstrate a quadratic quantum speedup for Shannon entropy estimation and a generic quantum speedup for α\alpha-R\'enyi entropy estimation for all α≥0\alpha\geq 0, including a tight bound for the collision-entropy (2-R\'enyi entropy). We also provide quantum upper bounds for extreme cases such as the Hartley entropy (i.e., the logarithm of the support size of a distribution, corresponding to α=0\alpha=0) and the min-entropy case (i.e., α=+∞\alpha=+\infty), as well as the Kullback-Leibler divergence between two distributions. Moreover, we complement our results with quantum lower bounds on α\alpha-R\'enyi entropy estimation for all α≥0\alpha\geq 0.Comment: 43 pages, 1 figur

    How Many Queries Will Resolve Common Randomness?

    Full text link
    A set of m terminals, observing correlated signals, communicate interactively to generate common randomness for a given subset of them. Knowing only the communication, how many direct queries of the value of the common randomness will resolve it? A general upper bound, valid for arbitrary signal alphabets, is developed for the number of such queries by using a query strategy that applies to all common randomness and associated communication. When the underlying signals are independent and identically distributed repetitions of m correlated random variables, the number of queries can be exponential in signal length. For this case, the mentioned upper bound is tight and leads to a single-letter formula for the largest query exponent, which coincides with the secret key capacity of a corresponding multiterminal source model. In fact, the upper bound constitutes a strong converse for the optimum query exponent, and implies also a new strong converse for secret key capacity. A key tool, estimating the size of a large probability set in terms of Renyi entropy, is interpreted separately, too, as a lossless block coding result for general sources. As a particularization, it yields the classic result for a discrete memoryless source.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Rate-Exponent Region for a Class of Distributed Hypothesis Testing Against Conditional Independence Problems

    Full text link
    We study a class of KK-encoder hypothesis testing against conditional independence problems. Under the criterion that stipulates minimization of the Type II error subject to a (constant) upper bound ϵ\epsilon on the Type I error, we characterize the set of encoding rates and exponent for both discrete memoryless and memoryless vector Gaussian settings. For the DM setting, we provide a converse proof and show that it is achieved using the Quantize-Bin-Test scheme of Rahman and Wagner. For the memoryless vector Gaussian setting, we develop a tight outer bound by means of a technique that relies on the de Bruijn identity and the properties of Fisher information. In particular, the result shows that for memoryless vector Gaussian sources the rate-exponent region is exhausted using the Quantize-Bin-Test scheme with \textit{Gaussian} test channels; and there is \textit{no} loss in performance caused by restricting the sensors' encoders not to employ time sharing. Furthermore, we also study a variant of the problem in which the source, not necessarily Gaussian, has finite differential entropy and the sensors' observations noises under the null hypothesis are Gaussian. For this model, our main result is an upper bound on the exponent-rate function. The bound is shown to mirror a corresponding explicit lower bound, except that the lower bound involves the source power (variance) whereas the upper bound has the source entropy power. Part of the utility of the established bound is for investigating asymptotic exponent/rates and losses incurred by distributed detection as function of the number of sensors.Comment: Submitted for publication to the IEEE Transactions of Information Theory. arXiv admin note: substantial text overlap with arXiv:1904.03028, arXiv:1811.0393

    A Tight Convex Upper Bound on the Likelihood of a Finite Mixture

    Full text link
    The likelihood function of a finite mixture model is a non-convex function with multiple local maxima and commonly used iterative algorithms such as EM will converge to different solutions depending on initial conditions. In this paper we ask: is it possible to assess how far we are from the global maximum of the likelihood? Since the likelihood of a finite mixture model can grow unboundedly by centering a Gaussian on a single datapoint and shrinking the covariance, we constrain the problem by assuming that the parameters of the individual models are members of a large discrete set (e.g. estimating a mixture of two Gaussians where the means and variances of both Gaussians are members of a set of a million possible means and variances). For this setting we show that a simple upper bound on the likelihood can be computed using convex optimization and we analyze conditions under which the bound is guaranteed to be tight. This bound can then be used to assess the quality of solutions found by EM (where the final result is projected on the discrete set) or any other mixture estimation algorithm. For any dataset our method allows us to find a finite mixture model together with a dataset-specific bound on how far the likelihood of this mixture is from the global optimum of the likelihoodComment: icpr 201

    On the Capacity of the Wiener Phase-Noise Channel: Bounds and Capacity Achieving Distributions

    Full text link
    In this paper, the capacity of the additive white Gaussian noise (AWGN) channel, affected by time-varying Wiener phase noise is investigated. Tight upper and lower bounds on the capacity of this channel are developed. The upper bound is obtained by using the duality approach, and considering a specific distribution over the output of the channel. In order to lower-bound the capacity, first a family of capacity-achieving input distributions is found by solving a functional optimization of the channel mutual information. Then, lower bounds on the capacity are obtained by drawing samples from the proposed distributions through Monte-Carlo simulations. The proposed capacity-achieving input distributions are circularly symmetric, non-Gaussian, and the input amplitudes are correlated over time. The evaluated capacity bounds are tight for a wide range of signal-to-noise-ratio (SNR) values, and thus they can be used to quantify the capacity. Specifically, the bounds follow the well-known AWGN capacity curve at low SNR, while at high SNR, they coincide with the high-SNR capacity result available in the literature for the phase-noise channel.Comment: IEEE Transactions on Communications, 201

    Contraction of Locally Differentially Private Mechanisms

    Full text link
    We investigate the contraction properties of locally differentially private mechanisms. More specifically, we derive tight upper bounds on the divergence between PKP\mathsf{K} and QKQ\mathsf{K} output distributions of an ε\varepsilon-LDP mechanism K\mathsf{K} in terms of a divergence between the corresponding input distributions PP and QQ, respectively. Our first main technical result presents a sharp upper bound on the χ2\chi^2-divergence χ2(PK∥QK)\chi^2(P\mathsf{K}\|Q\mathsf{K}) in terms of χ2(P∥Q)\chi^2(P\|Q) and ε\varepsilon. We also show that the same result holds for a large family of divergences, including KL-divergence and squared Hellinger distance. The second main technical result gives an upper bound on χ2(PK∥QK)\chi^2(P\mathsf{K}\|Q\mathsf{K}) in terms of total variation distance TV(P,Q)\mathsf{TV}(P, Q) and ε\varepsilon. We then utilize these bounds to establish locally private versions of the van Trees inequality, Le Cam's, Assouad's, and the mutual information methods, which are powerful tools for bounding minimax estimation risks. These results are shown to lead to better privacy analyses than the state-of-the-arts in several statistical problems such as entropy and discrete distribution estimation, non-parametric density estimation, and hypothesis testing
    • …
    corecore