31 research outputs found

    The evolution of the cover time

    Full text link
    The cover time of a graph is a celebrated example of a parameter that is easy to approximate using a randomized algorithm, but for which no constant factor deterministic polynomial time approximation is known. A breakthrough due to Kahn, Kim, Lovasz and Vu yielded a (log log n)^2 polynomial time approximation. We refine this upper bound, and show that the resulting bound is sharp and explicitly computable in random graphs. Cooper and Frieze showed that the cover time of the largest component of the Erdos-Renyi random graph G(n,c/n) in the supercritical regime with c>1 fixed, is asymptotic to f(c) n \log^2 n, where f(c) tends to 1 as c tends to 1. However, our new bound implies that the cover time for the critical Erdos-Renyi random graph G(n,1/n) has order n, and shows how the cover time evolves from the critical window to the supercritical phase. Our general estimate also yields the order of the cover time for a variety of other concrete graphs, including critical percolation clusters on the Hamming hypercube {0,1}^n, on high-girth expanders, and on tori Z_n^d for fixed large d. For the graphs we consider, our results show that the blanket time, introduced by Winkler and Zuckerman, is within a constant factor of the cover time. Finally, we prove that for any connected graph, adding an edge can increase the cover time by at most a factor of 4.Comment: 14 pages, to appear in CP

    Simple random walk on distance-regular graphs

    Full text link
    A survey is presented of known results concerning simple random walk on the class of distance-regular graphs. One of the highlights is that electric resistance and hitting times between points can be explicitly calculated and given strong bounds for, which leads in turn to bounds on cover times, mixing times, etc. Also discussed are harmonic functions, moments of hitting and cover times, the Green's function, and the cutoff phenomenon. The main goal of the paper is to present these graphs as a natural setting in which to study simple random walk, and to stimulate further research in the field

    Mixing and relaxation time for Random Walk on Wreath Product Graphs

    Full text link
    Suppose that G and H are finite, connected graphs, G regular, X is a lazy random walk on G and Z is a reversible ergodic Markov chain on H. The generalized lamplighter chain X* associated with X and Z is the random walk on the wreath product H\wr G, the graph whose vertices consist of pairs (f,x) where f=(f_v)_{v\in V(G)} is a labeling of the vertices of G by elements of H and x is a vertex in G. In each step, X* moves from a configuration (f,x) by updating x to y using the transition rule of X and then independently updating both f_x and f_y according to the transition probabilities on H; f_z for z different of x,y remains unchanged. We estimate the mixing time of X* in terms of the parameters of H and G. Further, we show that the relaxation time of X* is the same order as the maximal expected hitting time of G plus |G| times the relaxation time of the chain on H.Comment: 30 pages, 1 figur
    corecore