29,182 research outputs found

    Template-Cut: A Pattern-Based Segmentation Paradigm

    Get PDF
    We present a scale-invariant, template-based segmentation paradigm that sets up a graph and performs a graph cut to separate an object from the background. Typically graph-based schemes distribute the nodes of the graph uniformly and equidistantly on the image, and use a regularizer to bias the cut towards a particular shape. The strategy of uniform and equidistant nodes does not allow the cut to prefer more complex structures, especially when areas of the object are indistinguishable from the background. We propose a solution by introducing the concept of a "template shape" of the target object in which the nodes are sampled non-uniformly and non-equidistantly on the image. We evaluate it on 2D-images where the object's textures and backgrounds are similar, and large areas of the object have the same gray level appearance as the background. We also evaluate it in 3D on 60 brain tumor datasets for neurosurgical planning purposes.Comment: 8 pages, 6 figures, 3 tables, 6 equations, 51 reference

    Cellular automata segmentation of brain tumors on post contrast MR images

    Get PDF
    In this paper, we re-examine the cellular automata(CA) al- gorithm to show that the result of its state evolution converges to that of the shortest path algorithm. We proposed a complete tumor segmenta- tion method on post contrast T1 MR images, which standardizes the VOI and seed selection, uses CA transition rules adapted to the problem and evolves a level set surface on CA states to impose spatial smoothness. Val- idation studies on 13 clinical and 5 synthetic brain tumors demonstrated the proposed algorithm outperforms graph cut and grow cut algorithms in all cases with a lower sensitivity to initialization and tumor type

    SEGMENT3D: A Web-based Application for Collaborative Segmentation of 3D images used in the Shoot Apical Meristem

    Full text link
    The quantitative analysis of 3D confocal microscopy images of the shoot apical meristem helps understanding the growth process of some plants. Cell segmentation in these images is crucial for computational plant analysis and many automated methods have been proposed. However, variations in signal intensity across the image mitigate the effectiveness of those approaches with no easy way for user correction. We propose a web-based collaborative 3D image segmentation application, SEGMENT3D, to leverage automatic segmentation results. The image is divided into 3D tiles that can be either segmented interactively from scratch or corrected from a pre-existing segmentation. Individual segmentation results per tile are then automatically merged via consensus analysis and then stitched to complete the segmentation for the entire image stack. SEGMENT3D is a comprehensive application that can be applied to other 3D imaging modalities and general objects. It also provides an easy way to create supervised data to advance segmentation using machine learning models
    corecore