3 research outputs found

    Low Profile Stretch Sensor for Soft Wearable Robotics

    Get PDF
    This paper presents a low profile stretch sensor for integration into soft structures, robots and wearables. The sensor mechanism uses a single piece of highly flexible and light weight optical fibre and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre, a technique often referred as macrobending light loss. In this arrangement, the optical fibre originates from sensor’s electronic unit, passes through a stretchable encasing structure in a macrobend pattern, and then loop back to the same unit resulting in a simplified electrical and optical design; the closed optical loop allows for no electronics at one end of the sensor making it safe for human robotics applications, and no optical interference with the external environment eliminating the need for complex conditioning circuitries. Of particular interest of the soft robotics community, the ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. Our experimental results indicate that the optical fibre’s bending radius is the dominant design parameter for sufficiently complex patterns, a finding that can facilitate generalisation of the sensing methods across different scales. The measurement performance of the mechanism and its impact on the stiffness of the encasing structure is benchmarked against a custom calibration and testing system

    Reliability, accuracy, and minimal detectable difference of a mixed concept marker set for finger kinematic evaluation

    Get PDF
    The study of finger biomechanics requires special tools for accurately recording finger joint data. A marker set to evaluate finger postures during activities of daily living is needed to understand finger biomechanics in order to improve prosthesis design and clinical interventions. The purpose of this study was to evaluate the reliability of a proposed hand marker set (the Warwick marker set) to capture finger kinematics using motion capture. The marker set consisted of the application of two and three marker clusters to the fingers of twelve participants who participated in the tests across two sessions. Calibration markers were applied using a custom palpation technique. Each participant performed a series of range of motion movements and held a set of objects. Intra and inter-session reliability was calculated as well as Standard Error of Measurement (SEM) and Minimal Detectable Difference (MDD). The findings showed varying levels of intra- and inter-session reliability, ranging from poor to excellent. The SEM and MDD values were lower for the intra-session range of motion and grasp evaluation. The reduced reliability can potentially be attributed to skin artifacts, differences in marker placement, and the inherent kinematic variability of finger motion. The proposed marker set shows potential to assess finger postures and analyse activities of daily living, primarily within the context of single session tests

    A Three-Dimensional-Printed Soft Robotic Glove With Enhanced Ergonomics and Force Capability

    No full text
    corecore