8,739 research outputs found

    Using image morphing for memory-efficient impostor rendering on GPU

    Get PDF
    Real-time rendering of large animated crowds consisting thousands of virtual humans is important for several applications including simulations, games and interactive walkthroughs; but cannot be performed using complex polygonal models at interactive frame rates. For that reason, several methods using large numbers of pre-computed image-based representations, which are called as impostors, have been proposed. These methods take the advantage of existing programmable graphics hardware to compensate the computational expense while maintaining the visual fidelity. Making the number of different virtual humans, which can be rendered in real-time, not restricted anymore by the required computational power but by the texture memory consumed for the variety and discretization of their animations. In this work, we proposed an alternative method that reduces the memory consumption by generating compelling intermediate textures using image-morphing techniques. In order to demonstrate the preserved perceptual quality of animations, where half of the key-frames were rendered using the proposed methodology, we have implemented the system using the graphical processing unit and obtained promising results at interactive frame rates

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Head-mounted virtual reality and mental health: critical review of current research

    Get PDF
    Background: eHealth interventions are becoming increasingly used in public health, with virtual reality (VR) being one of the most exciting recent developments. VR consists of a three-dimensional, computer-generated environment viewed through a head-mounted display. This medium has provided new possibilities to adapt problematic behaviors that affect mental health. VR is no longer unaffordable for individuals, and with mobile phone technology being able to track movements and project images through mobile head-mounted devices, VR is now a mobile tool that can be used at work, home, or on the move. Objective: In line with recent advances in technology, in this review, we aimed to critically assess the current state of research surrounding mental health. Methods: We compiled a table of 82 studies that made use of head-mounted devices in their interventions. Results: Our review demonstrated that VR is effective in provoking realistic reactions to feared stimuli, particularly for anxiety; moreover, it proved that the immersive nature of VR is an ideal fit for the management of pain. However, the lack of studies surrounding depression and stress highlight the literature gaps that still exist. Conclusions: Virtual environments that promote positive stimuli combined with health knowledge could prove to be a valuable tool for public health and mental health. The current state of research highlights the importance of the nature and content of VR interventions for improved mental health. While future research should look to incorporate more mobile forms of VR, a more rigorous reporting of VR and computer hardware and software may help us understand the relationship (if any) between increased specifications and the efficacy of treatment

    High Performance Algorithms for Counting Collisions and Pairwise Interactions

    Full text link
    The problem of counting collisions or interactions is common in areas as computer graphics and scientific simulations. Since it is a major bottleneck in applications of these areas, a lot of research has been carried out on such subject, mainly focused on techniques that allow calculations to be performed within pruned sets of objects. This paper focuses on how interaction calculation (such as collisions) within these sets can be done more efficiently than existing approaches. Two algorithms are proposed: a sequential algorithm that has linear complexity at the cost of high memory usage; and a parallel algorithm, mathematically proved to be correct, that manages to use GPU resources more efficiently than existing approaches. The proposed and existing algorithms were implemented, and experiments show a speedup of 21.7 for the sequential algorithm (on small problem size), and 1.12 for the parallel proposal (large problem size). By improving interaction calculation, this work contributes to research areas that promote interconnection in the modern world, such as computer graphics and robotics.Comment: Accepted in ICCS 2019 and published in Springer's LNCS series. Supplementary content at https://mjsaldanha.com/articles/1-hpc-ssp

    An Immersive Telepresence System using RGB-D Sensors and Head Mounted Display

    Get PDF
    We present a tele-immersive system that enables people to interact with each other in a virtual world using body gestures in addition to verbal communication. Beyond the obvious applications, including general online conversations and gaming, we hypothesize that our proposed system would be particularly beneficial to education by offering rich visual contents and interactivity. One distinct feature is the integration of egocentric pose recognition that allows participants to use their gestures to demonstrate and manipulate virtual objects simultaneously. This functionality enables the instructor to ef- fectively and efficiently explain and illustrate complex concepts or sophisticated problems in an intuitive manner. The highly interactive and flexible environment can capture and sustain more student attention than the traditional classroom setting and, thus, delivers a compelling experience to the students. Our main focus here is to investigate possible solutions for the system design and implementation and devise strategies for fast, efficient computation suitable for visual data processing and network transmission. We describe the technique and experiments in details and provide quantitative performance results, demonstrating our system can be run comfortably and reliably for different application scenarios. Our preliminary results are promising and demonstrate the potential for more compelling directions in cyberlearning.Comment: IEEE International Symposium on Multimedia 201
    • …
    corecore