27 research outputs found

    Learning with Out-of-Distribution Data for Audio Classification

    Get PDF
    In supervised machine learning, the assumption that training data is labelled correctly is not always satisfied. In this paper, we investigate an instance of labelling error for classification tasks in which the dataset is corrupted with out-of-distribution (OOD) instances: data that does not belong to any of the target classes, but is labelled as such. We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning. The proposed method uses an auxiliary classifier, trained on data that is known to be in-distribution, for detection and relabelling. The amount of data required for this is shown to be small. Experiments are carried out on the FSDnoisy18k audio dataset, where OOD instances are very prevalent. The proposed method is shown to improve the performance of convolutional neural networks by a significant margin. Comparisons with other noise-robust techniques are similarly encouraging.Comment: Paper accepted for 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020

    Classification with unknown class-conditional label noise on non-compact feature spaces

    Get PDF
    We investigate the problem of classification in the presence of unknown class-conditional label noise in which the labels observed by the learner have been corrupted with some unknown class dependent probability. In order to obtain finite sample rates, previous approaches to classification with unknown class-conditional label noise have required that the regression function is close to its extrema on sets of large measure. We shall consider this problem in the setting of non-compact metric spaces, where the regression function need not attain its extrema. In this setting we determine the minimax optimal learning rates (up to logarithmic factors). The rate displays interesting threshold behaviour: When the regression function approaches its extrema at a sufficient rate, the optimal learning rates are of the same order as those obtained in the label-noise free setting. If the regression function approaches its extrema more gradually then classification performance necessarily degrades. In addition, we present an adaptive algorithm which attains these rates without prior knowledge of either the distributional parameters or the local density. This identifies for the first time a scenario in which finite sample rates are achievable in the label noise setting, but they differ from the optimal rates without label noise

    Binary Classification with Instance and Label Dependent Label Noise

    Full text link
    Learning with label dependent label noise has been extensively explored in both theory and practice; however, dealing with instance (i.e., feature) and label dependent label noise continues to be a challenging task. The difficulty arises from the fact that the noise rate varies for each instance, making it challenging to estimate accurately. The question of whether it is possible to learn a reliable model using only noisy samples remains unresolved. We answer this question with a theoretical analysis that provides matching upper and lower bounds. Surprisingly, our results show that, without any additional assumptions, empirical risk minimization achieves the optimal excess risk bound. Specifically, we derive a novel excess risk bound proportional to the noise level, which holds in very general settings, by comparing the empirical risk minimizers obtained from clean samples and noisy samples. Second, we show that the minimax lower bound for the 0-1 loss is a constant proportional to the average noise rate. Our findings suggest that learning solely with noisy samples is impossible without access to clean samples or strong assumptions on the distribution of the data

    Towards Label-free Scene Understanding by Vision Foundation Models

    Full text link
    Vision foundation models such as Contrastive Vision-Language Pre-training (CLIP) and Segment Anything (SAM) have demonstrated impressive zero-shot performance on image classification and segmentation tasks. However, the incorporation of CLIP and SAM for label-free scene understanding has yet to be explored. In this paper, we investigate the potential of vision foundation models in enabling networks to comprehend 2D and 3D worlds without labelled data. The primary challenge lies in effectively supervising networks under extremely noisy pseudo labels, which are generated by CLIP and further exacerbated during the propagation from the 2D to the 3D domain. To tackle these challenges, we propose a novel Cross-modality Noisy Supervision (CNS) method that leverages the strengths of CLIP and SAM to supervise 2D and 3D networks simultaneously. In particular, we introduce a prediction consistency regularization to co-train 2D and 3D networks, then further impose the networks' latent space consistency using the SAM's robust feature representation. Experiments conducted on diverse indoor and outdoor datasets demonstrate the superior performance of our method in understanding 2D and 3D open environments. Our 2D and 3D network achieves label-free semantic segmentation with 28.4% and 33.5% mIoU on ScanNet, improving 4.7% and 7.9%, respectively. And for nuScenes dataset, our performance is 26.8% with an improvement of 6%. Code will be released (https://github.com/runnanchen/Label-Free-Scene-Understanding)

    PI-GNN: A Novel Perspective on Semi-Supervised Node Classification against Noisy Labels

    Full text link
    Semi-supervised node classification, as a fundamental problem in graph learning, leverages unlabeled nodes along with a small portion of labeled nodes for training. Existing methods rely heavily on high-quality labels, which, however, are expensive to obtain in real-world applications since certain noises are inevitably involved during the labeling process. It hence poses an unavoidable challenge for the learning algorithm to generalize well. In this paper, we propose a novel robust learning objective dubbed pairwise interactions (PI) for the model, such as Graph Neural Network (GNN) to combat noisy labels. Unlike classic robust training approaches that operate on the pointwise interactions between node and class label pairs, PI explicitly forces the embeddings for node pairs that hold a positive PI label to be close to each other, which can be applied to both labeled and unlabeled nodes. We design several instantiations for PI labels based on the graph structure and the node class labels, and further propose a new uncertainty-aware training technique to mitigate the negative effect of the sub-optimal PI labels. Extensive experiments on different datasets and GNN architectures demonstrate the effectiveness of PI, yielding a promising improvement over the state-of-the-art methods.Comment: 16 pages, 3 figure
    corecore