15,412 research outputs found

    On Graduated Optimization for Stochastic Non-Convex Problems

    Full text link
    The graduated optimization approach, also known as the continuation method, is a popular heuristic to solving non-convex problems that has received renewed interest over the last decade. Despite its popularity, very little is known in terms of theoretical convergence analysis. In this paper we describe a new first-order algorithm based on graduated optimiza- tion and analyze its performance. We characterize a parameterized family of non- convex functions for which this algorithm provably converges to a global optimum. In particular, we prove that the algorithm converges to an {\epsilon}-approximate solution within O(1/\epsilon^2) gradient-based steps. We extend our algorithm and analysis to the setting of stochastic non-convex optimization with noisy gradient feedback, attaining the same convergence rate. Additionally, we discuss the setting of zero-order optimization, and devise a a variant of our algorithm which converges at rate of O(d^2/\epsilon^4).Comment: 17 page

    Orthonormal Expansion l1-Minimization Algorithms for Compressed Sensing

    Full text link
    Compressed sensing aims at reconstructing sparse signals from significantly reduced number of samples, and a popular reconstruction approach is â„“1\ell_1-norm minimization. In this correspondence, a method called orthonormal expansion is presented to reformulate the basis pursuit problem for noiseless compressed sensing. Two algorithms are proposed based on convex optimization: one exactly solves the problem and the other is a relaxed version of the first one. The latter can be considered as a modified iterative soft thresholding algorithm and is easy to implement. Numerical simulation shows that, in dealing with noise-free measurements of sparse signals, the relaxed version is accurate, fast and competitive to the recent state-of-the-art algorithms. Its practical application is demonstrated in a more general case where signals of interest are approximately sparse and measurements are contaminated with noise.Comment: 7 pages, 2 figures, 1 tabl

    Generalized Kernel-based Visual Tracking

    Full text link
    In this work we generalize the plain MS trackers and attempt to overcome standard mean shift trackers' two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a large amount of data. Tracking is viewed as a binary classification problem, and a discriminative classification rule is learned to distinguish between the object and background. We adopt a support vector machine (SVM) for training. The tracker is then implemented by maximizing the classification score. An iterative optimization scheme very similar to MS is derived for this purpose.Comment: 12 page
    • …
    corecore