1,226 research outputs found

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    Distributed Rate Allocation Policies for Multi-Homed Video Streaming over Heterogeneous Access Networks

    Full text link
    We consider the problem of rate allocation among multiple simultaneous video streams sharing multiple heterogeneous access networks. We develop and evaluate an analytical framework for optimal rate allocation based on observed available bit rate (ABR) and round-trip time (RTT) over each access network and video distortion-rate (DR) characteristics. The rate allocation is formulated as a convex optimization problem that minimizes the total expected distortion of all video streams. We present a distributed approximation of its solution and compare its performance against H-infinity optimal control and two heuristic schemes based on TCP-style additive-increase-multiplicative decrease (AIMD) principles. The various rate allocation schemes are evaluated in simulations of multiple high-definition (HD) video streams sharing multiple access networks. Our results demonstrate that, in comparison with heuristic AIMD-based schemes, both media-aware allocation and H-infinity optimal control benefit from proactive congestion avoidance and reduce the average packet loss rate from 45% to below 2%. Improvement in average received video quality ranges between 1.5 to 10.7 dB in PSNR for various background traffic loads and video playout deadlines. Media-aware allocation further exploits its knowledge of the video DR characteristics to achieve a more balanced video quality among all streams.Comment: 12 pages, 22 figure

    Mapping web personal learning environments

    Get PDF
    A recent trend in web development is to build platforms which are carefully designed to host a plurality of software components (sometimes called widgets or plugins) which can be organized or combined (mashed-up) at user's convenience to create personalized environments. The same holds true for the web development of educational applications. The degree of personalization can depend on the role of users such as in traditional virtual learning environment, where the components are chosen by a teacher in the context of a course. Or, it can be more opened as in a so-called personalized learning environment (PLE). It now exists a wide array of available web platforms exhibiting different functionalities but all built on the same concept of aggregating components together to support different tasks and scenarios. There is now an overlap between the development of PLE and the more generic developments in web 2.0 applications such as social network sites. This article shows that 6 more or less independent dimensions allow to map the functionalities of these platforms: the screen dimensionmaps the visual integration, the data dimension maps the portability of data, the temporal dimension maps the coupling between participants, the social dimension maps the grouping of users, the activity dimension maps the structuring of end users–interactions with the environment, and the runtime dimensionmaps the flexibility in accessing the system from different end points. Finally these dimensions are used to compare 6 familiar Web platforms which could potentially be used in the construction of a PLE

    QoS provisioning in multimedia streaming

    Get PDF
    Multimedia consists of voice, video, and data. Sample applications include video conferencing, video on demand, distance learning, distributed games, and movies on demand. Providing Quality of Service (QoS) for multimedia streaming has been a difficult and challenging problem. When multimedia traffic is transported over a network, video traffic, though usually compressed/encoded for bandwidth reduction, still consumes most of the bandwidth. In addition, compressed video streams typically exhibit highly variable bit rates as well as long range dependence properties, thus exacerbating the challenge in meeting the stringent QoS requirements of multimedia streaming with high network utilization. Dynamic bandwidth allocation in which video traffic prediction can play an important role is thus needed. Prediction of the variation of the I frame size using Least Mean Square (LMS) is first proposed. Owing to a smoother sequence, better prediction has been achieved as compared to the composite MPEG video traffic prediction scheme. One problem with this LMS algorithm is its slow convergence. In Variable Bit Rate (VBR) videos characterized by frequent scene changes, the LMS algorithm may result in an extended period of intractability, and thus may experience excessive cell loss during scene changes. A fast convergent non-linear predictor called Variable Step-size Algorithm (VSA) is subsequently proposed to overcome this drawback. The VSA algorithm not only incurs small prediction errors but more importantly achieves fast convergence. It tracks scene changes better than LMS. Bandwidth is then assigned based on the predicted I frame size which is usually the largest in a Group of Picture (GOP). Hence, the Cell Loss Ratio (CLR) can be kept small. By reserving bandwidth at least equal to the predicted one, only prediction errors need to be buffered. Since the prediction error was demonstrated to resemble white noise or exhibits at most short term memory, smaller buffers, less delay, and higher bandwidth utilization can be achieved. In order to further improve network bandwidth utilization, a QoS guaranteed on-line bandwidth allocation is proposed. This method allocates the bandwidth based on the predicted GOP and required QoS. Simulations and analytical results demonstrate that this scheme provides guaranteed delay and achieves higher bandwidth utilization. Network traffic is generally accepted to be self similar. Aggregating self similar traffic can actually intensify rather than diminish burstiness. Thus, traffic prediction plays an important role in network management. Least Mean Kurtosis (LMK), which uses the negated kurtosis of the error signal as the cost function, is proposed to predict the self similar traffic. Simulation results show that the prediction performance is improved greatly as compared to the LMS algorithm. Thus, it can be used to effectively predict the real time network traffic. The Differentiated Service (DiffServ) model is a less complex and more scalable solution for providing QoS to IP as compared to the Integrated Service (IntServ) model. We propose to transport MPEG frames through various service classes of DiffServ according to the MPEG video characteristics. Performance analysis and simulation results show that our proposed approach can not only guarantee QoS but can also achieve high bandwidth utilization. As the end video quality is determined not only by the network QoS but also by the encoded video quality, we consider video quality from these two aspects and further propose to transport spatial scalable encoded videos over DiffServ. Performance analysis and simulation results show that this can provision QoS guarantees. The dropping policy we propose at the egress router can reduce the traffic load as well as the risk of congestion in other domains

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques

    Methods of Congestion Control for Adaptive Continuous Media

    Get PDF
    Since the first exchange of data between machines in different locations in early 1960s, computer networks have grown exponentially with millions of people now using the Internet. With this, there has also been a rapid increase in different kinds of services offered over the World Wide Web from simple e-mails to streaming video. It is generally accepted that the commonly used protocol suite TCP/IP alone is not adequate for a number of modern applications with high bandwidth and minimal delay requirements. Many technologies are emerging such as IPv6, Diffserv, Intserv etc, which aim to replace the onesize-fits-all approach of the current lPv4. There is a consensus that the networks will have to be capable of multi-service and will have to isolate different classes of traffic through bandwidth partitioning such that, for example, low priority best-effort traffic does not cause delay for high priority video traffic. However, this research identifies that even within a class there may be delays or losses due to congestion and the problem will require different solutions in different classes. The focus of this research is on the requirements of the adaptive continuous media class. These are traffic flows that require a good Quality of Service but are also able to adapt to the network conditions by accepting some degradation in quality. It is potentially the most flexible traffic class and therefore, one of the most useful types for an increasing number of applications. This thesis discusses the QoS requirements of adaptive continuous media and identifies an ideal feedback based control system that would be suitable for this class. A number of current methods of congestion control have been investigated and two methods that have been shown to be successful with data traffic have been evaluated to ascertain if they could be adapted for adaptive continuous media. A novel method of control based on percentile monitoring of the queue occupancy is then proposed and developed. Simulation results demonstrate that the percentile monitoring based method is more appropriate to this type of flow. The problem of congestion control at aggregating nodes of the network hierarchy, where thousands of adaptive flows may be aggregated to a single flow, is then considered. A unique method of pricing mean and variance is developed such that each individual flow is charged fairly for its contribution to the congestion

    Robust mode selection for block-motion-compensated video encoding

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 129-132).by Raynard O. Hinds.Ph.D

    Blast-Induced Tinnitus: A Combined Behavioral, Memri, And Electrophysiology Study

    Get PDF
    ABSTRACT BLAST-INDUCED TINNITUS: A COMBINED BEHAVIORAL, MEMRE, AND ELECTROPHYSIOLOGY STUDY by JESSICA OUYANG May 2014 Advisor: Drs. Steve Cala & Jinsheng Zhang Major: Physiology Degree: Doctor of Philosophy Tinnitus and hearing loss are the frequent auditory-related co-morbidities of blast trauma. The etiology of blast-induced tinnitus is also muddled by brain mechanisms associated with emotional and cognitive problems such as anxiety, memory loss, and depression. We set out to develop a realistic and ecologically valid model to address changes of cognitive status and psychological state that are associated with blast- induced tinnitus. In this study, 19 adult rats were randomly divided into the sham group (n=6) and the blast group (n=13). Blast exposure (14 psi) was conducted via a shock wave tube to expose the left ears of the rats in the blast group, and a sham exposure was conducted to the rats in the sham group. Blast-induced tinnitus was evaluated with gap detection and pre-pulse inhibition (PPI) acoustic startle reflex paradigms; the changes of thresholds of the hearing was evaluated with auditory brainstem response (ABRs), the change in the level of anxiety was evaluated with elevated plus maze; and the change in the status of memory was evaluated with one-day Morris water maze. To investigate blast-induced neuronal changes in the limbic structures, we utilized MEMRI technique. Obtained with MRIcro, MR intensity signal-to-noise ratios (SNRs) of 83 selected limbic structures were measured to represent the level of synaptic activity. Of the 13 rats that were exposed to blast shock wave, 8 rats developed chronic tinnitus on post-exposure day 35 (PED35) and 5 rats did not. Our results showed that compared to rats in the sham group (n=6), (1) rats in the blast group with or without tinnitus demonstrated higher level of anxiety (p\u3c0.05); (2) rats in the blast group that exhibited behavioral evidences of tinnitus (n=8) demonstrated neuronal hyperactivity in bilateral amygdaloidal complex, specifically bilateral basolateral groups and the left cortical-like group of the amygdala (p\u3c0.05); and (3) rats in the blast group demonstrated neuronal hyperactivity in bilateral nucleus accumbens core (p\u3c0.05). In conclusion, the elevated level of synaptic activity in the bilateral amygdala and nucleus accumbens core indicates central plasticity associated with blast-induced tinnitus
    • …
    corecore