6,744 research outputs found

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Get PDF
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process

    Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment

    Full text link
    We present a simulation-based study using deep convolutional neural networks (DCNNs) to identify neutrino interaction vertices in the MINERvA passive targets region, and illustrate the application of domain adversarial neural networks (DANNs) in this context. DANNs are designed to be trained in one domain (simulated data) but tested in a second domain (physics data) and utilize unlabeled data from the second domain so that during training only features which are unable to discriminate between the domains are promoted. MINERvA is a neutrino-nucleus scattering experiment using the NuMI beamline at Fermilab. AA-dependent cross sections are an important part of the physics program, and these measurements require vertex finding in complicated events. To illustrate the impact of the DANN we used a modified set of simulation in place of physics data during the training of the DANN and then used the label of the modified simulation during the evaluation of the DANN. We find that deep learning based methods offer significant advantages over our prior track-based reconstruction for the task of vertex finding, and that DANNs are able to improve the performance of deep networks by leveraging available unlabeled data and by mitigating network performance degradation rooted in biases in the physics models used for training.Comment: 41 page

    Low-cost technologies used in corrosion monitoring

    Get PDF
    Globally, corrosion is the costliest cause of the deterioration of metallic and concrete structures, leading to significant financial losses and unexpected loss of life. Therefore, corrosion monitoring is vital to the assessment of structures’ residual performance and for the identification of pathologies in early stages for the predictive maintenance of facilities. However, the high price tag on available corrosion monitoring systems leads to their exclusive use for structural health monitoring applications, especially for atmospheric corrosion detection in civil structures. In this paper a systematic literature review is provided on the state-of-the-art electrochemical methods and physical methods used so far for corrosion monitoring compatible with low-cost sensors and data acquisition devices for metallic and concrete structures. In addition, special attention is paid to the use of these devices for corrosion monitoring and detection for in situ applications in different industries. This analysis demonstrates the possible applications of low-cost sensors in the corrosion monitoring sector. In addition, this study provides scholars with preferred techniques and the most common microcontrollers, such as Arduino, to overcome the corrosion monitoring difficulties in the construction industry.The authors are indebted to the projects PID2021‐126405OB‐C31 and PID2021‐126405OB‐C32 funded by FEDER funds—A Way to Make Europe and Spanish Ministry of Economy and Com‐petitiveness MICIN/AEI/10.13039/501100011033/, project PID2019‐106555RB‐I00 and project IDEAS 2.14 from Ports 4.0. It should also be noted that funding for this research was provided for Seyed‐milad Komarizadehasl by the European Social Fund and the Spanish Agencia Estatal de Investi‐gación del Ministerio de Ciencia Innovación y Universidades, grant (PRE2018‐083238).Peer ReviewedPostprint (published version

    SHMD \u272024 – Book of abstracts

    Get PDF
    Book of abstracts of the 17th International Symposium of the Croatian Metallurgical Society - SHMD \u272024 - Materials and metallurgy, Zagreb, Croatia, April 18-19 2024
    • 

    corecore