7 research outputs found

    Effects of pitch and musical sounds on body-representations when moving with sound

    Get PDF
    The effects of music on bodily movement and feelings, such as when people are dancing or engaged in physical activity, are well-documented—people may move in response to the sound cues, feel powerful, less tired. How sounds and bodily movements relate to create such effects? Here we deconstruct the problem and investigate how different auditory features affect people’s body-representation and feelings even when paired with the same movement. In three experiments, participants executed a simple arm raise synchronised with changing pitch in simple tones (Experiment 1), rich musical sounds (Experiment 2) and within different frequency ranges (Experiment 3), while we recorded indirect and direct measures on their movement, body-representations and feelings. Changes in pitch influenced people’s general emotional state as well as the various bodily dimensions investigated—movement, proprioceptive awareness and feelings about one’s body and movement. Adding harmonic content amplified the differences between ascending and descending sounds, while shifting the absolute frequency range had a general effect on movement amplitude, bodily feelings and emotional state. These results provide new insights in the role of auditory and musical features in dance and exercise, and have implications for the design of sound-based applications supporting movement expression, physical activity, or rehabilitation

    Effects of pitch and musical sounds on body-representations when moving with sound

    Get PDF
    The effects of music on bodily movement and feelings, such as when people are dancing or engaged in physical activity, are well-documented¿people may move in response to the sound cues, feel powerful, less tired. How sounds and bodily movements relate to create such effects? Here we deconstruct the problem and investigate how different auditory features affect people's body-representation and feelings even when paired with the same movement. In three experiments, participants executed a simple arm raise synchronised with changing pitch in simple tones (Experiment 1), rich musical sounds (Experiment 2) and within different frequency ranges (Experiment 3), while we recorded indirect and direct measures on their movement, body-representations and feelings. Changes in pitch influenced people's general emotional state as well as the various bodily dimensions investigated¿movement, proprioceptive awareness and feelings about one's body and movement. Adding harmonic content amplified the differences between ascending and descending sounds, while shifting the absolute frequency range had a general effect on movement amplitude, bodily feelings and emotional state. These results provide new insights in the role of auditory and musical features in dance and exercise, and have implications for the design of sound-based applications supporting movement expression, physical activity, or rehabilitation.We acknowledge funding by the Spanish Agencia Estatal de Investigación (PID2019-105579RB-I00/AEI/10.13039/501100011033) and the European Research Council Grant (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101002711). JL is funded by the Ministry of Economy, Industry and Competitivity of Spain (doctoral training Grant BES-2017-080471). OD is funded by the Volkswagen Foundation (Co-Sense grant). FB is partially funded by the ELEMENT project (ANR-18-CE33-0002)

    A System for Mobile Active Music Listening Based on Social Interaction and Embodiment

    No full text
    Social interaction and embodiment are key issues for future User Centric Media. Social networks and games are more and more characterized by an active, physical participation of the users. The integration in mobile devices of a growing number of sensors to capture users\u2019 physical activity (e.g., accelerometers, cameras) and context information (GPS, location) supports novel systems capable to connect audiovisual content processing and communication to users social behavior, including joint movement and physical engagement. In this paper, a system enabling a novel paradigm for social, active experience of sound and music content is presented. An instance of such a system, named Sync\u2018n\u2019Move, allowing two users to explore a multi-channel pre-recorded music piece as the result of their social interaction, and in particular of their synchronization, is introduced. This research has been developed in the framework of the EU-ICT Project SAME (www.sameproject.eu) and has been presented at Agora Festival (IRCAM, Centre Pompidou, Paris, June 2009). In that occasion, Sync\u2018n\u2019Move has been evaluated by both expert and non expert users, and results are briefly presented. Perspectives on the impact of such a novel paradigm and system in future User Centric Media are finally discussed, with a specific focus on social active experience of audiovisual content

    Interactive Tango Milonga: An Interactive Dance System for Argentine Tango Social Dance

    Get PDF
    abstract: When dancers are granted agency over music, as in interactive dance systems, the actors are most often concerned with the problem of creating a staged performance for an audience. However, as is reflected by the above quote, the practice of Argentine tango social dance is most concerned with participants internal experience and their relationship to the broader tango community. In this dissertation I explore creative approaches to enrich the sense of connection, that is, the experience of oneness with a partner and complete immersion in music and dance for Argentine tango dancers by providing agency over musical activities through the use of interactive technology. Specifically, I create an interactive dance system that allows tango dancers to affect and create music via their movements in the context of social dance. The motivations for this work are multifold: 1) to intensify embodied experience of the interplay between dance and music, individual and partner, couple and community, 2) to create shared experience of the conventions of tango dance, and 3) to innovate Argentine tango social dance practice for the purposes of education and increasing musicality in dancers.Dissertation/ThesisDoctoral Dissertation Music 201

    Using movement sonification to alter body perception and promote physical activity in physically inactive people

    Get PDF
    Mención Internacional en el título de doctorWorldwide, one out of four adults are not physically active enough. Supporting people to be physically active through technology remains thus an important challenge in the field of Human-Computer Interaction (HCI). Some technologies have tried to tackle this challenge of increasing physical activity (PA) by using sensing devices for monitoring the amount and quality of PA and providing motivational feedback on it. However, such technologies provide very limited support to physically inactive users: while users are aware of their physical inactivity level, they are frequently incapable of acting on these problems by themselves. Among the reasons for it are negative perceptions about one’s body (e.g., feelings of body tiredness or weakness in self-esteem) which may act as psychological barriers to PA. This research project aims to address this limitation by employing an approach that, through movement sonification (i.e., real-time auditory feedback on body movement), exploits bottom-up multisensory mechanisms related to BPs to ultimately support PA. This thesis presents the design, development, and evaluation of SoniShoes and SoniBand, two wearable technological devices with a gesture-sound palette that allows for a range of body movement sonifications aimed to alter BPs. These prototypes aim at changing BPs, and in turn emotional state and movement behavior, to address psychological barriers related to the perception of one’s body, and ultimately impact positively on people’s adherence to PA. First, this work proposes to organize knowledge through a taxonomy of the barriers to PA related to body perception (BP), which follows a process of four steps to inform the design of the movement-sound palette: (1) Identification, (2) Extraction and clustering of attributes, (3) Definition of instructions or considerations, and (4) Strategies. The first two steps allowed the identification and grouping of barriers to PA that are related to BPs, with inputs from a literature review, a survey, and a focus group with HCI experts. The third and fourth steps allowed defining the body features and dimensions to act upon, to finally propose movement sonification strategies that have the potential to tackle the barriers. Second, several movement-sound mappings, based on metaphors, are presented. Movements were selected from exercises included in guidelines for becoming more physically active (e.g., walking). The mappings of these movements into sounds were implemented in SoniShoes and SoniBand prototypes. They were evaluated through an iterative process, starting with an exploratory study that tested for the first time the potential of the proposed mappings to change BPs. In this first study, participants were asked to think aloud about their experiences using the first prototype of SoniShoes (from MagicShoes project), by describing their body sensations and sound characteristics during the exercise. Results suggested the potential of movement sonification to alter BP through movement sonification and informed the design of the subsequent studies and prototypes. This exploratory study was followed by quantitative and qualitative studies aimed to understand how to design movement sonifications and wearable devices integrating them to facilitate PA by tackling barriers related to BP. The quantitative studies were controlled laboratory studies, in which different versions of SoniShoes and SoniBand prototypes were evaluated, and which results led to further iterations of the prototypes. The results of these quantitative evaluations revealed movement-sound mappings that can lead to changes in feelings about the body (e.g., feeling lighter or less tired), feelings about the movement (e.g., having more movement control over the movement), and emotional feelings (e.g., having more comfort, motivation to complete the exercise, or feeling happier) during PA. Results also showed effects of sound on movement behavior, such as effects in movement deceleration/acceleration and stance time, and proprioceptive awareness. Furthermore, two qualitative studies were carried out, which involved using the SoniBand prototype for several days and in two different contexts of use, laboratory and home. The aim of these studies was two-fold. First, elucidating the effects that particular metaphorical sonifications’ qualities and characteristics have on people’s perception of their own body and their PA. Second, understanding how the observed effects may be specific to physically inactive (vs. active) populations. The results revealed specific connections between properties of the movement sonifications (e.g., gradual or frequency changes) on the one hand, and particular body feelings (e.g., feeling strong) and aspects of PA (e.g., repetitions) on the other hand, but effects seem to vary according to the PA-level of the populations. Finally, the findings, contributions, and principles for the design of movement sonifications and wearable technology to promote PA through acting upon BP are discussed, finishing by considering implications for potential interventions and applications supporting PA, as well as opportunities opened for future research.En todo el mundo, uno de cada cuatro adultos no es lo suficientemente activo físicamente. Por ello, ayudar a las personas a ser físicamente activas a través de la tecnología sigue siendo un reto importante en el campo de “Human-Computer Interaction” (HCI). Algunas tecnologías han tratado de abordar el reto de aumentar la actividad física (PA) mediante el uso de dispositivos de detección para controlar la cantidad y la calidad de la PA y proporcionar retroalimentación motivacional al respecto. Sin embargo, estas tecnologías proporcionan una ayuda muy limitada a los usuarios físicamente inactivos: aunque los usuarios son conscientes de su nivel de inactividad física, a menudo son incapaces de actuar por sí mismos sobre estos problemas. Entre las razones están las percepciones negativas sobre el propio cuerpo (por ejemplo, la sensación de cansancio corporal o el no sentirse capaces) que pueden actuar como barreras psicológicas para la PA. Este proyecto de investigación pretende abordar esta limitación empleando un enfoque que, a través de la sonificación del movimiento (es decir, la retroalimentación auditiva en tiempo real sobre el movimiento del cuerpo), explota los mecanismos “bottom-up” multisensoriales relacionados con las percepciones del cuerpo (BPs) para apoyar la PA. Esta tesis presenta el diseño, el desarrollo y la evaluación de “SoniShoes” y “SoniBand”, dos dispositivos tecnológicos vestibles con una paleta de gestos y sonidos que permiten una serie de sonificaciones del movimiento corporal destinadas a modificar las BPs. Estos prototipos tienen como objetivo cambiar las BPs, y a su vez el estado emocional y el comportamiento de movimiento, para abordar las barreras psicológicas relacionadas con la BP, y en última instancia impactar positivamente en la adherencia de las personas a la PA. En primer lugar, este trabajo propone organizar el conocimiento a través de una taxonomía de las barreras a la PA relacionadas con la BP, que sigue un proceso de cuatro pasos para informar el diseño de la paleta de movimiento-sonido: (1) Identificación, (2) Extracción y agrupación de atributos, (3) Definición de instrucciones o consideraciones, y (4) Estrategias. Los dos primeros pasos permitieron identificar y agrupar las barreras a la PA relacionadas con los BP, con aportaciones de una revisión bibliográfica, una encuesta y un grupo de discusión con expertos en HCI. El tercero y cuarto paso permitió definir las características y dimensiones corporales sobre las que actuar, para finalmente proponer estrategias de sonificación del movimiento que tienen el potencial de abordar las barreras. En segundo lugar, se presentan varios mapeos de movimiento-sonido, basados en metáforas. Los movimientos se seleccionaron a partir de ejercicios incluidos en las guías para ser más activos físicamente (por ejemplo, caminar). Los mapeos de estos movimientos en sonidos se implementaron en los prototipos “SoniShoes” y “SoniBand”. Se evaluaron a través de un proceso iterativo, comenzando con un estudio exploratorio que probó por primera vez el potencial de los mapeos propuestos para cambiar los BP. En este primer estudio, se pidió a los participantes que pensaran en voz alta sobre sus experiencias utilizando el primer prototipo de “SoniShoes” (llamado “MagicShoes”), describiendo sus sensaciones corporales y las características del sonido durante el ejercicio. Los resultados mostraron el potencial de la sonificación del movimiento para alterar la BP a través de la sonificación del movimiento e informaron el diseño de los estudios y prototipos posteriores. A este estudio exploratorio le siguieron estudios cuantitativos y cualitativos destinados a comprender cómo diseñar sonificaciones del movimiento y dispositivos vestibles que las integren para facilitar la PA abordando las barreras relacionadas con la BP. Los estudios cuantitativos fueron estudios de laboratorio controlados, en los que se evaluaron diferentes versiones de los prototipos “SoniShoes” y “SoniBand”, y cuyos resultados condujeron a nuevas iteraciones de los prototipos. Los resultados de estas evaluaciones cuantitativas mostraron que existen mapeos de movimiento-sonido que pueden provocar cambios en las sensaciones sobre el cuerpo (por ejemplo, sentirse más ligero o menos cansado), en las sensaciones sobre el movimiento (por ejemplo, tener más control sobre el movimiento) y en las sensaciones emocionales (por ejemplo, tener más comodidad, motivación para completar el ejercicio o sentirse más feliz) durante la PA. Los resultados también mostraron los efectos del sonido en el comportamiento del movimiento, como los efectos en la desaceleración/aceleración del movimiento y el tiempo de postura, y la conciencia propioceptiva. Además, se llevaron a cabo dos estudios cualitativos, en los que se utilizó el prototipo “SoniBand” durante varios días y en dos contextos de uso diferentes, el laboratorio y el hogar. El objetivo de estos estudios era doble. En primer lugar, dilucidar los efectos que determinadas cualidades y características de las sonificaciones con metáforas tienen en la percepción que las personas tienen de su propio cuerpo y de su PA. En segundo lugar, comprender cómo los efectos observados pueden ser específicos de las poblaciones físicamente inactivas (vs. las activas). Los resultados revelaron conexiones específicas entre las propiedades de las sonificaciones de movimiento (por ejemplo, los cambios graduales o de frecuencia) por un lado, y las sensaciones corporales particulares (por ejemplo, sentirse fuerte) y los aspectos de la PA (por ejemplo, las repeticiones) por otro lado, pero los efectos parecen variar según el nivel de PA de las poblaciones. Por último, se discuten los hallazgos, las contribuciones y las guías de diseño de sonificación de movimiento y tecnología vestible para promover la PA a través de la actuación sobre la BP, para finalmente considerar las implicaciones para las posibles intervenciones y aplicaciones de apoyo a la PA, así como las oportunidades abiertas para futuras investigaciones.I owe thanks to “MAGIC SHOES” (PSI2016-79004-R and BES-2017-080471) and “CROSS-COLAB” (PGC2018-101884-B-I00) projects that funded my research. Thanks to “MAGIC OUTFIT” (PID2019-105579RB-I00) for letting me be part of the team and project.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Paloma Martínez Fernández.- Secretario: Domna Banakou.- Vocal: Mar González Franc

    Staying active despite pain: Investigating feedback mechanisms to support physical activity in people with chronic musculoskeletal pain

    Get PDF
    Chronic (persistent) pain (CP) affects 1 in 10 adults; clinical resources are insufficient, and anxiety about activity restricts lives. Physical activity is important for improving function and quality of life in people with chronic pain, but psychological factors such as fear of increased pain and damage due to activity, lack of confidence or support, make it difficult to build and maintain physical activity towards long-term goals. There is insufficient research to guide the design of interactive technology to support people with CP in self-managing physical activity. This thesis aims to bridge this gap through five contributions: first, a detailed analysis from a plethora of qualitative studies with people with CP and physiotherapists was done to identify factors to be incorporated into technology to promote physical activity despite pain. Second, we rethink the role of technology in improving uptake of physical activity in people with CP by proposing a novel sonification framework (Go-with-the-flow) that addresses psychological and physical needs raised by our studies; through an iterative approach, we designed a wearable device to implement and evaluate the framework. In control studies conducted to evaluate the sonification strategies, people with CP reported increased performance, motivation, awareness of movement, and relaxation with sound feedback. A focus group, and a survey of CP patients conducted at the end of a hospital pain management session provided an in-depth understanding of how different aspects of the framework and device facilitate self-directed rehabilitation. Third, we understand the role of sensing technology and real-time feedback in supporting functional activity, using the Go-with-the-flow framework and wearable device; we conducted evaluations including contextual interviews, diary studies and a 7-14 days study of self-directed home-based use of the device by people with CP. Fourth, building on the understanding from all our studies and literature from other conditions where physical rehabilitation is critical, we propose a framework for designing technology for physical rehabilitation (RaFT). Fifth, we reflect on our studies with people with CP and physiotherapists and provide practical insights for HCI research in sensitive settings
    corecore