106,235 research outputs found

    Text to 3D Scene Generation with Rich Lexical Grounding

    Full text link
    The ability to map descriptions of scenes to 3D geometric representations has many applications in areas such as art, education, and robotics. However, prior work on the text to 3D scene generation task has used manually specified object categories and language that identifies them. We introduce a dataset of 3D scenes annotated with natural language descriptions and learn from this data how to ground textual descriptions to physical objects. Our method successfully grounds a variety of lexical terms to concrete referents, and we show quantitatively that our method improves 3D scene generation over previous work using purely rule-based methods. We evaluate the fidelity and plausibility of 3D scenes generated with our grounding approach through human judgments. To ease evaluation on this task, we also introduce an automated metric that strongly correlates with human judgments.Comment: 10 pages, 7 figures, 3 tables. To appear in ACL-IJCNLP 201

    Unified Pragmatic Models for Generating and Following Instructions

    Full text link
    We show that explicit pragmatic inference aids in correctly generating and following natural language instructions for complex, sequential tasks. Our pragmatics-enabled models reason about why speakers produce certain instructions, and about how listeners will react upon hearing them. Like previous pragmatic models, we use learned base listener and speaker models to build a pragmatic speaker that uses the base listener to simulate the interpretation of candidate descriptions, and a pragmatic listener that reasons counterfactually about alternative descriptions. We extend these models to tasks with sequential structure. Evaluation of language generation and interpretation shows that pragmatic inference improves state-of-the-art listener models (at correctly interpreting human instructions) and speaker models (at producing instructions correctly interpreted by humans) in diverse settings.Comment: NAACL 2018, camera-ready versio

    Show and Tell: A Neural Image Caption Generator

    Full text link
    Automatically describing the content of an image is a fundamental problem in artificial intelligence that connects computer vision and natural language processing. In this paper, we present a generative model based on a deep recurrent architecture that combines recent advances in computer vision and machine translation and that can be used to generate natural sentences describing an image. The model is trained to maximize the likelihood of the target description sentence given the training image. Experiments on several datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. Our model is often quite accurate, which we verify both qualitatively and quantitatively. For instance, while the current state-of-the-art BLEU-1 score (the higher the better) on the Pascal dataset is 25, our approach yields 59, to be compared to human performance around 69. We also show BLEU-1 score improvements on Flickr30k, from 56 to 66, and on SBU, from 19 to 28. Lastly, on the newly released COCO dataset, we achieve a BLEU-4 of 27.7, which is the current state-of-the-art

    Machine Learning and Irresponsible Inference: Morally Assessing the Training Data for Image Recognition Systems

    Get PDF
    Just as humans can draw conclusions responsibly or irresponsibly, so too can computers. Machine learning systems that have been trained on data sets that include irresponsible judgments are likely to yield irresponsible predictions as outputs. In this paper I focus on a particular kind of inference a computer system might make: identification of the intentions with which a person acted on the basis of photographic evidence. Such inferences are liable to be morally objectionable, because of a way in which they are presumptuous. After elaborating this moral concern, I explore the possibility that carefully procuring the training data for image recognition systems could ensure that the systems avoid the problem. The lesson of this paper extends beyond just the particular case of image recognition systems and the challenge of responsibly identifying a person’s intentions. Reflection on this particular case demonstrates the importance (as well as the difficulty) of evaluating machine learning systems and their training data from the standpoint of moral considerations that are not encompassed by ordinary assessments of predictive accuracy
    • …
    corecore