2 research outputs found

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠšΠ°Π½Ρ‚ΠΎΡ€ΠΎΠ²ΠΈΡ‡Π° для ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… наноструктур

    Get PDF
    Within the effective mass approximation the description of dynamics of quantum-dimensional semiconductor nanostructures, e.g., quantum wells, quantum wires, and quantum dots, reduced to a multidimensional boundary-value problem for SchrΓΆdinger-type equations. For solving such problems we elaborate the symbolic-numerical algorithms realizing a computational scheme based on the generalization of Kantorovich method, reducing the problem to a set of boundary problems for second-order ordinary differential equations. The efficiency of the algorithms was demonstrated by analysis of spectral and optical characteristics of axially-symmetric spheroidal quantum dots with different confining potentials.Π’ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ эффСктивной массы Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… наноструктур, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Π΅ ямы, ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΎΠ²ΠΎΠ»ΠΎΠΊΠΈ ΠΈ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΊΡ€Π°Π΅Π²ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ для ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΡˆΡ€Ρ‘Π΄ΠΈΠ½Π³Π΅Ρ€ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ‚Π°ΠΊΠΈΡ… Π·Π°Π΄Π°Ρ‡ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ символьно-числСнныС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ схСму, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡƒΡŽ Π½Π° ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠšΠ°Π½Ρ‚ΠΎΡ€ΠΎΠ²ΠΈΡ‡Π° – Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΊ Π½Π°Π±ΠΎΡ€Ρƒ ΠΊΡ€Π°Π΅Π²Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ для ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² продСмонстрирована Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ оптичСских характСристик ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ аксиально-симмСтричных ΡΡ„Π΅Ρ€ΠΎΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π°ΠΌΠΈ

    Super-Exponentially Convergent Parallel Algorithm for a Fractional Eigenvalue Problem of Jacobi-Type

    Full text link
    A new algorithm for eigenvalue problems for the fractional Jacobi type ODE is proposed. The algorithm is based on piecewise approximation of the coefficients of the differential equation with subsequent recursive procedure adapted from some homotopy considerations. As a result, the eigenvalue problem (which is in fact nonlinear) is replaced by a sequence of linear boundary value problems (besides the first one) with a singular linear operator called the exact functional discrete scheme (EFDS). A finite subsequence of mm terms, called truncated functional discrete scheme (TFDS), is the basis for our algorithm. The approach provides an super-exponential convergence rate as mβ†’βˆžm \to \infty. The eigenpairs can be computed in parallel for all given indexes. The algorithm is based on some recurrence procedures including the basic arithmetical operations with the coefficients of some expansions only. This is an exact symbolic algorithm (ESA) for m=∞m=\infty and a truncated symbolic algorithm (TSA) for a finite mm. Numerical examples are presented to support the theory.Comment: 15 page
    corecore