29,982 research outputs found

    A Survey on Semantic Parsing

    Full text link
    A significant amount of information in today's world is stored in structured and semi-structured knowledge bases. Efficient and simple methods to query them are essential and must not be restricted to only those who have expertise in formal query languages. The field of semantic parsing deals with converting natural language utterances to logical forms that can be easily executed on a knowledge base. In this survey, we examine the various components of a semantic parsing system and discuss prominent work ranging from the initial rule based methods to the current neural approaches to program synthesis. We also discuss methods that operate using varying levels of supervision and highlight the key challenges involved in the learning of such systems.Comment: AKBC 201

    Context Dependent Semantic Parsing: A Survey

    Full text link
    Semantic parsing is the task of translating natural language utterances into machine-readable meaning representations. Currently, most semantic parsing methods are not able to utilize contextual information (e.g. dialogue and comments history), which has a great potential to boost semantic parsing performance. To address this issue, context dependent semantic parsing has recently drawn a lot of attention. In this survey, we investigate progress on the methods for the context dependent semantic parsing, together with the current datasets and tasks. We then point out open problems and challenges for future research in this area. The collected resources for this topic are available at:https://github.com/zhuang-li/Contextual-Semantic-Parsing-Paper-List.Comment: 10 pages, acceteped by COLING'202

    A Survey of Syntactic-Semantic Parsing Based on Constituent and Dependency Structures

    Full text link
    Syntactic and semantic parsing has been investigated for decades, which is one primary topic in the natural language processing community. This article aims for a brief survey on this topic. The parsing community includes many tasks, which are difficult to be covered fully. Here we focus on two of the most popular formalizations of parsing: constituent parsing and dependency parsing. Constituent parsing is majorly targeted to syntactic analysis, and dependency parsing can handle both syntactic and semantic analysis. This article briefly reviews the representative models of constituent parsing and dependency parsing, and also dependency graph parsing with rich semantics. Besides, we also review the closely-related topics such as cross-domain, cross-lingual and joint parsing models, parser application as well as corpus development of parsing in the article.Comment: SCIENCE CHINA Technological Science

    The Gap of Semantic Parsing: A Survey on Automatic Math Word Problem Solvers

    Full text link
    Solving mathematical word problems (MWPs) automatically is challenging, primarily due to the semantic gap between human-readable words and machine-understandable logics. Despite the long history dated back to the1960s, MWPs have regained intensive attention in the past few years with the advancement of Artificial Intelligence (AI). Solving MWPs successfully is considered as a milestone towards general AI. Many systems have claimed promising results in self-crafted and small-scale datasets. However, when applied on large and diverse datasets, none of the proposed methods in the literature achieves high precision, revealing that current MWP solvers still have much room for improvement. This motivated us to present a comprehensive survey to deliver a clear and complete picture of automatic math problem solvers. In this survey, we emphasize on algebraic word problems, summarize their extracted features and proposed techniques to bridge the semantic gap and compare their performance in the publicly accessible datasets. We also cover automatic solvers for other types of math problems such as geometric problems that require the understanding of diagrams. Finally, we identify several emerging research directions for the readers with interests in MWPs.Comment: 18 pages, 5 figure

    A Survey on Semantic Parsing from the perspective of Compositionality

    Full text link
    Different from previous surveys in semantic parsing (Kamath and Das, 2018) and knowledge base question answering(KBQA)(Chakraborty et al., 2019; Zhu et al., 2019; Hoffner et al., 2017) we try to takes a different perspective on the study of semantic parsing. Specifically, we will focus on (a)meaning composition from syntactical structure(Partee, 1975), and (b) the ability of semantic parsers to handle lexical variation given the context of a knowledge base (KB). In the following section after an introduction of the field of semantic parsing and its uses in KBQA, we will describe meaning representation using grammar formalism CCG (Steedman, 1996). We will discuss semantic composition using formal languages in Section 2. In section 3 we will consider systems that uses formal languages e.g. λ\lambda-calculus (Steedman, 1996), λ\lambda-DCS (Liang, 2013). Section 4 and 5 consider semantic parser using structured-language for logical form. Section 6 is on different benchmark datasets ComplexQuestions (Bao et al.,2016) and GraphQuestions (Su et al., 2016) that can be used to evaluate semantic parser on their ability to answer complex questions that are highly compositional in nature

    Searching for Efficient Multi-Scale Architectures for Dense Image Prediction

    Full text link
    The design of neural network architectures is an important component for achieving state-of-the-art performance with machine learning systems across a broad array of tasks. Much work has endeavored to design and build architectures automatically through clever construction of a search space paired with simple learning algorithms. Recent progress has demonstrated that such meta-learning methods may exceed scalable human-invented architectures on image classification tasks. An open question is the degree to which such methods may generalize to new domains. In this work we explore the construction of meta-learning techniques for dense image prediction focused on the tasks of scene parsing, person-part segmentation, and semantic image segmentation. Constructing viable search spaces in this domain is challenging because of the multi-scale representation of visual information and the necessity to operate on high resolution imagery. Based on a survey of techniques in dense image prediction, we construct a recursive search space and demonstrate that even with efficient random search, we can identify architectures that outperform human-invented architectures and achieve state-of-the-art performance on three dense prediction tasks including 82.7\% on Cityscapes (street scene parsing), 71.3\% on PASCAL-Person-Part (person-part segmentation), and 87.9\% on PASCAL VOC 2012 (semantic image segmentation). Additionally, the resulting architecture is more computationally efficient, requiring half the parameters and half the computational cost as previous state of the art systems.Comment: Accepted by NIPS 201

    Machine Learning with World Knowledge: The Position and Survey

    Full text link
    Machine learning has become pervasive in multiple domains, impacting a wide variety of applications, such as knowledge discovery and data mining, natural language processing, information retrieval, computer vision, social and health informatics, ubiquitous computing, etc. Two essential problems of machine learning are how to generate features and how to acquire labels for machines to learn. Particularly, labeling large amount of data for each domain-specific problem can be very time consuming and costly. It has become a key obstacle in making learning protocols realistic in applications. In this paper, we will discuss how to use the existing general-purpose world knowledge to enhance machine learning processes, by enriching the features or reducing the labeling work. We start from the comparison of world knowledge with domain-specific knowledge, and then introduce three key problems in using world knowledge in learning processes, i.e., explicit and implicit feature representation, inference for knowledge linking and disambiguation, and learning with direct or indirect supervision. Finally we discuss the future directions of this research topic

    Joint learning of ontology and semantic parser from text

    Full text link
    Semantic parsing methods are used for capturing and representing semantic meaning of text. Meaning representation capturing all the concepts in the text may not always be available or may not be sufficiently complete. Ontologies provide a structured and reasoning-capable way to model the content of a collection of texts. In this work, we present a novel approach to joint learning of ontology and semantic parser from text. The method is based on semi-automatic induction of a context-free grammar from semantically annotated text. The grammar parses the text into semantic trees. Both, the grammar and the semantic trees are used to learn the ontology on several levels -- classes, instances, taxonomic and non-taxonomic relations. The approach was evaluated on the first sentences of Wikipedia pages describing people

    Using Syntax-Based Machine Translation to Parse English into Abstract Meaning Representation

    Full text link
    We present a parser for Abstract Meaning Representation (AMR). We treat English-to-AMR conversion within the framework of string-to-tree, syntax-based machine translation (SBMT). To make this work, we transform the AMR structure into a form suitable for the mechanics of SBMT and useful for modeling. We introduce an AMR-specific language model and add data and features drawn from semantic resources. Our resulting AMR parser improves upon state-of-the-art results by 7 Smatch points.Comment: 10 pages, 8 figure

    AppTechMiner: Mining Applications and Techniques from Scientific Articles

    Full text link
    This paper presents AppTechMiner, a rule-based information extraction framework that automatically constructs a knowledge base of all application areas and problem solving techniques. Techniques include tools, methods, datasets or evaluation metrics. We also categorize individual research articles based on their application areas and the techniques proposed/improved in the article. Our system achieves high average precision (~82%) and recall (~84%) in knowledge base creation. It also performs well in application and technique assignment to an individual article (average accuracy ~66%). In the end, we further present two use cases presenting a trivial information retrieval system and an extensive temporal analysis of the usage of techniques and application areas. At present, we demonstrate the framework for the domain of computational linguistics but this can be easily generalized to any other field of research.Comment: JCDL 2017, 6th International Workshop on Mining Scientific Publications. arXiv admin note: substantial text overlap with arXiv:1608.0638
    corecore