2 research outputs found

    Self-adjusting offspring population sizes outperform fixed parameters on the cliff function

    Get PDF
    In the discrete domain, self-adjusting parameters of evolutionary algorithms (EAs) has emerged as a fruitful research area with many runtime analyses showing that self-adjusting parameters can out-perform the best fixed parameters. Most existing runtime analyses focus on elitist EAs on simple problems, for which moderate performance gains were shown. Here we consider a much more challenging scenario: the multimodal function Cliff, defined as an example where a (1, λ) EA is effective, and for which the best known upper runtime bound for standard EAs is O(n25).We prove that a (1, λ) EA self-adjusting the offspring population size λ using success-based rules optimises Cliff in O(n) expected generations and O(n log n) expected evaluations. Along the way, we prove tight upper and lower bounds on the runtime for fixed λ (up to a logarithmic factor) and identify the runtime for the best fixed λ as nη for η ≈ 3.9767 (up to sub-polynomial factors). Hence, the self-adjusting (1, λ) EA outperforms the best fixed parameter by a factor of at least n2.9767 (up to sub-polynomial factors)

    A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization

    No full text
    International audienceThe theory of evolutionary computation for discrete search spaces has made significant progress since the early 2010s. This survey summarizes some of the most important recent results in this research area. It discusses fine-grained models of runtime analysis of evolutionary algorithms, highlights recent theoretical insights on parameter tuning and parameter control, and summarizes the latest advances for stochastic and dynamic problems. We regard how evolutionary algorithms optimize submodular functions, and we give an overview over the large body of recent results on estimation of distribution algorithms. Finally, we present the state of the art of drift analysis, one of the most powerful analysis technique developed in this field
    corecore