49,117 research outputs found

    A Survey on Location-Driven Influence Maximization

    Full text link
    Influence Maximization (IM), which aims to select a set of users from a social network to maximize the expected number of influenced users, is an evergreen hot research topic. Its research outcomes significantly impact real-world applications such as business marketing. The booming location-based network platforms of the last decade appeal to the researchers embedding the location information into traditional IM research. In this survey, we provide a comprehensive review of the existing location-driven IM studies from the perspective of the following key aspects: (1) a review of the application scenarios of these works, (2) the diffusion models to evaluate the influence propagation, and (3) a comprehensive study of the approaches to deal with the location-driven IM problems together with a particular focus on the accelerating techniques. In the end, we draw prospects into the research directions in future IM research

    Maximizing Welfare in Social Networks under a Utility Driven Influence Diffusion Model

    Full text link
    Motivated by applications such as viral marketing, the problem of influence maximization (IM) has been extensively studied in the literature. The goal is to select a small number of users to adopt an item such that it results in a large cascade of adoptions by others. Existing works have three key limitations. (1) They do not account for economic considerations of a user in buying/adopting items. (2) Most studies on multiple items focus on competition, with complementary items receiving limited attention. (3) For the network owner, maximizing social welfare is important to ensure customer loyalty, which is not addressed in prior work in the IM literature. In this paper, we address all three limitations and propose a novel model called UIC that combines utility-driven item adoption with influence propagation over networks. Focusing on the mutually complementary setting, we formulate the problem of social welfare maximization in this novel setting. We show that while the objective function is neither submodular nor supermodular, surprisingly a simple greedy allocation algorithm achieves a factor of (1−1/e−ϵ)(1-1/e-\epsilon) of the optimum expected social welfare. We develop \textsf{bundleGRD}, a scalable version of this approximation algorithm, and demonstrate, with comprehensive experiments on real and synthetic datasets, that it significantly outperforms all baselines.Comment: 33 page
    • …
    corecore