9,947 research outputs found

    A Survey on Cross-Layer Design Frameworks for Multimedia Applications over Wireless Networks

    Full text link
    In the last few years, the Internet throughput, usage and reliability have increased almost exponentially. The introduction of broadband wireless mobile ad hoc networks (MANETs) and cellular networks together with increased computational power have opened the door for a new breed of applications to be created, namely real-time multimedia applications. Delivering real-time multimedia traffic over a complex network like the Internet is a particularly challenging task since these applications have strict quality -of-service (QoS) requirements on bandwidth, delay, and delay jitter. Traditional IP-based best effort service will not be able to meet these stringent requirements. The time-varying nature of wireless channels and resource constrained wireless devices make the problem even more difficult. To improve perceived media quality by end users over wireless Internet, QoS supports can be addressed in different layers, including application layer, transport layer and link layer. Cross layer design is a well-known approach to achieve this adaptation. In cross-layer design, the challenges from the physical wireless medium and the QoS-demands from the applications are taken into account so that the rate, power, and coding at the physical layer can adapted to meet the requirements of the applications given the current channel and network conditions. A number of propositions for cross-layer designs exist in the literature. In this paper, an extensive review has been made on these cross-layer architectures that combine the application-layer, transport layer and the link layer controls. Particularly the issues like channel estimation techniques, adaptive controls at the application and link layers for energy efficiency, priority based scheduling, transmission rate control at the transport layer, and adaptive automatic repeat request (ARQ) are discussed in detail.Comment: 16 pages, 9 figure

    A study of research trends and issues in wireless ad hoc networks

    Full text link
    Ad hoc network enables network creation on the fly without support of any predefined infrastructure. The spontaneous erection of networks in anytime and anywhere fashion enables development of various novel applications based on ad hoc networks. However, at the same ad hoc network presents several new challenges. Different research proposals have came forward to resolve these challenges. This chapter provides a survey of current issues, solutions and research trends in wireless ad hoc network. Even though various surveys are already available on the topic, rapid developments in recent years call for an updated account on this topic. The chapter has been organized as follows. In the first part of the chapter, various ad hoc network's issues arising at different layers of TCP/IP protocol stack are presented. An overview of research proposals to address each of these issues is also provided. The second part of the chapter investigates various emerging models of ad hoc networks, discusses their distinctive properties and highlights various research issues arising due to these properties. We specifically provide discussion on ad hoc grids, ad hoc clouds, wireless mesh networks and cognitive radio ad hoc networks. The chapter ends with presenting summary of the current research on ad hoc network, ignored research areas and directions for further research

    Common Metrics for Analyzing, Developing and Managing Telecommunication Networks

    Full text link
    The metrics play increasingly fundamental role in the design, development, deployment and operation of telecommunication systems. Despite their importance, the studies of metrics are usually limited to a narrow area or a well-defined objective. Our study aims to more broadly survey the metrics that are commonly used for analyzing, developing and managing telecommunication networks in order to facilitate understanding of the current metrics landscape. The metrics are simple abstractions of systems, and they directly influence how the systems are perceived by different stakeholders. However, defining and using metrics for telecommunication systems with ever increasing complexity is a complicated matter which has not been so far systematically and comprehensively considered in the literature. The common metrics sources are identified, and how the metrics are used and selected is discussed. The most commonly used metrics for telecommunication systems are categorized and presented as energy and power metrics, quality-of-service metrics, quality-of-experience metrics, security metrics, and reliability and resilience metrics. Finally, the research directions and recommendations how the metrics can evolve, and be defined and used more effectively are outlined.Comment: 5 figures, 18 table

    Towards combinatorial modeling of wireless technology generations

    Full text link
    The paper addresses the following problems: (1) a brief survey on wireless mobile communication technologies including evolution, history evolution (e.g., chain of system generations 0G, 1G, 2G, 3G, 4G, 5G, 6G, 7G); (2) using a hierarchical structural modular approach to the generations of the wireless communication systems (i.e., hierarchical combinatorial modeling of the communication technologies), (3) illustrative usage of two-stage combinatorial approach to improvement/forecasting of the communication technology (a version of 5G) (on the basis of multiple choice problem). Numerical examples illustrate the suggested combinatorial approach.Comment: 20 pages, 13 figures, 9 table

    A Survey on QoE-oriented Wireless Resources Scheduling

    Full text link
    Future wireless systems are expected to provide a wide range of services to more and more users. Advanced scheduling strategies thus arise not only to perform efficient radio resource management, but also to provide fairness among the users. On the other hand, the users' perceived quality, i.e., Quality of Experience (QoE), is becoming one of the main drivers within the schedulers design. In this context, this paper starts by providing a comprehension of what is QoE and an overview of the evolution of wireless scheduling techniques. Afterwards, a survey on the most recent QoE-based scheduling strategies for wireless systems is presented, highlighting the application/service of the different approaches reported in the literature, as well as the parameters that were taken into account for QoE optimization. Therefore, this paper aims at helping readers interested in learning the basic concepts of QoE-oriented wireless resources scheduling, as well as getting in touch with its current research frontier.Comment: Revised version: updated according to the most recent related literature; added references; corrected typo

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Full text link
    The Internet is inherently a multipath network---for an underlying network with only a single path connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault-tolerance (through the use of multiple paths in backup/ redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be unmistakably multipath, including the use of multipath technology in datacenter computing; multi-interface, multi-channel, and multi-antenna trends in wireless; ubiquity of mobile devices that are multi-homed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as MP-TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely the control plane problem of how to compute and select the routes, and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Mobile Cloud Business Process Management System for the Internet of Things: A Survey

    Full text link
    The Internet of Things (IoT) represents a comprehensive environment that consists of a large number of smart devices interconnecting heterogeneous physical objects to the Internet. Many domains such as logistics, manufacturing, agriculture, urban computing, home automation, ambient assisted living and various ubiquitous computing applications have utilised IoT technologies. Meanwhile, Business Process Management Systems (BPMS) have become a successful and efficient solution for coordinated management and optimised utilisation of resources/entities. However, past BPMS have not considered many issues they will face in managing large scale connected heterogeneous IoT entities. Without fully understanding the behaviour, capability and state of the IoT entities, the BPMS can fail to manage the IoT integrated information systems. In this paper, we analyse existing BPMS for IoT and identify the limitations and their drawbacks based on Mobile Cloud Computing perspective. Later, we discuss a number of open challenges in BPMS for IoT.Comment: 56 pages, 10 figures, 5 table

    Software Defined Optical Networks (SDONs): A Comprehensive Survey

    Full text link
    The emerging Software Defined Networking (SDN) paradigm separates the data plane from the control plane and centralizes network control in an SDN controller. Applications interact with controllers to implement network services, such as network transport with Quality of Service (QoS). SDN facilitates the virtualization of network functions so that multiple virtual networks can operate over a given installed physical network infrastructure. Due to the specific characteristics of optical (photonic) communication components and the high optical transmission capacities, SDN based optical networking poses particular challenges, but holds also great potential. In this article, we comprehensively survey studies that examine the SDN paradigm in optical networks; in brief, we survey the area of Software Defined Optical Networks (SDONs). We mainly organize the SDON studies into studies focused on the infrastructure layer, the control layer, and the application layer. Moreover, we cover SDON studies focused on network virtualization, as well as SDON studies focused on the orchestration of multilayer and multidomain networking. Based on the survey, we identify open challenges for SDONs and outline future directions

    The Past, Present, and Future of Transport-Layer Multipath

    Full text link
    Multipathing in communication networks is gaining momentum due to its attractive features of increased reliability, throughput, fault tolerance, and load balancing capabilities. In particular, wireless environments and datacenters are envisioned to become largely dependent on the power of multipathing for seamless handovers, virtual machine (VM) migration and in general, pooling less proficient resources together for achieving overall high proficiency. The transport layer, with its knowledge about end-to-end path characteristics, is well placed to enhance performance through better utilization of multiple paths. Realizing the importance of transport-layer multipath, this paper investigates the modernization of traditional connection establishment, flow control, sequence number splitting, acknowledgement, and flow scheduling mechanisms for use with multiple paths. Since congestion control defines a fundamental feature of the transport layer, we study the working of multipath rate control and analyze its stability and convergence. We also discuss how various multipath congestion control algorithms differ in their window increase and decrease functions, their TCP-friendliness, and responsiveness. To the best of our knowledge, this is the first in-depth survey paper that has chronicled the evolution of the transport layer of the Internet from the traditional single-path TCP to the recent development of the modern multipath TCP (MPTCP) protocol. Along with describing the history of this evolution, we also highlight in this paper the remaining challenges and research issues

    All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

    Full text link
    With the Internet of Things (IoT) becoming part of our daily life and our environment, we expect rapid growth in the number of connected devices. IoT is expected to connect billions of devices and humans to bring promising advantages for us. With this growth, fog computing, along with its related edge computing paradigms, such as multi-access edge computing (MEC) and cloudlet, are seen as promising solutions for handling the large volume of security-critical and time-sensitive data that is being produced by the IoT. In this paper, we first provide a tutorial on fog computing and its related computing paradigms, including their similarities and differences. Next, we provide a taxonomy of research topics in fog computing, and through a comprehensive survey, we summarize and categorize the efforts on fog computing and its related computing paradigms. Finally, we provide challenges and future directions for research in fog computing.Comment: 48 pages, 7 tables, 11 figures, 450 references. The data (categories and features/objectives of the papers) of this survey are now available publicly. Accepted by Elsevier Journal of Systems Architectur
    corecore