80,226 research outputs found

    Quantitative Assessment of TV White Space in India

    Full text link
    Licensed but unutilized television (TV) band spectrum is called as TV white space in the literature. Ultra high frequency (UHF) TV band spectrum has very good wireless radio propagation characteristics. The amount of TV white space in the UHF TV band in India is of interest. Comprehensive quantitative assessment and estimates for the TV white space in the 470-590MHz band for four zones of India (all except north) are presented in this work. This is the first effort in India to estimate TV white spaces in a comprehensive manner. The average available TV white space per unit area in these four zones is calculated using two methods: (i) the primary (licensed) user and secondary (unlicensed) user point of view; and, (ii) the regulations of Federal Communications Commission in the United States. By both methods, the average available TV white space in the UHF TV band is shown to be more than 100MHz! A TV transmitter frequency-reassignment algorithm is also described. Based on spatial-reuse ideas, a TV channel allocation scheme is presented which results in insignicant interference to the TV receivers while using the least number of TV channels for transmission across the four zones. Based on this reassignment, it is found that four TV band channels (or 32MHz) are sufficient to provide the existing UHF TV band coverage in India

    DVB-T channels power measurements in indoor/outdoor cases

    Get PDF
    In this paper the analysis of the spectrum occupancy in the TV band is provided based on the indoor and outdoor measurements campaigns carried out in Poznan, Poland, and Barcelona, Spain, in 2013. The goal of this work is to discuss the stability and other important features of the observed spectrum occupancy in the context of indoor/outdoor Radio Environment Maps database deployment. Reliable deployment of these databases seems to be one of the critical points in practical utilization of the TV White Spaces for cognitive purposes inside buildings and in densely populated cities.Postprint (published version

    Performance of a TV white space database with different terrain resolutions and propagation models

    Get PDF
    Cognitive Radio has now become a realistic option for the solution of the spectrum scarcity problem in wireless communication. TV channels (the primary user) can be protected from secondary-user interference by accurate prediction of TV White Spaces (TVWS) by using appropriate propagation modelling. In this paper we address two related aspects of channel occupancy prediction for cognitive radio. Firstly we investigate the best combination of empirical propagation model and spatial resolution of terrain data for predicting TVWS by examining the performance of three propagation models (Extended-Hata, Davidson-Hata and Egli) in the TV band 470 to 790 MHz along with terrain data resolutions of 1000, 100 and 30 m, when compared with a comprehensive set of propagation measurements taken in randomly-selected locations around Hull, UK. Secondly we describe how such models can be integrated into a database-driven tool for cognitive radio channel selection within the TVWS environment

    Information reuse in dynamic spectrum access

    Get PDF
    Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Design of Cognitive Radio Database using Terrain Maps and Validated Propagation Models

    Get PDF
    Cognitive Radio (CR) encompasses a number of technologies which enable adaptive self-programing of systems at different levels to provide more effective use of the increasingly congested radio spectrum. CRs have potential to use spectrum allocated to TV services, which is not used by the primary user (TV), without causing disruptive interference to licensed users by using appropriate propagation modelling in TV White Spaces (TVWS). In this paper we address two related aspects of channel occupancy prediction for cognitive radio. Firstly, we continue to investigate the best propagation model among three propagation models (Extended-Hata, Davidson-Hata and Egli) for use in the TV band, whilst also finding the optimum terrain data resolution to use (1000, 100 or 30 m). We compare modelled results with measurements taken in randomly-selected locations around Hull UK, using the two comparison criteria of implementation time and accuracy, when used for predicting TVWS system performance. Secondly, we describe how such models can be integrated into a database-driven tool for CR channel selection within the TVWS environment by creating a flexible simulation system for creating a TVWS database

    Comparison of spectrum occupancy measurements using software defined radio RTL-SDR with a conventional spectrum analyzer approach

    Get PDF
    In the present day Cognitive Radio has become a realistic option for solution of the spectrum scarcity problem in wireless communication. Recently, the TV band has attracted attention due to the considerable potential for exploitation of available TV white space which is not utilized based on time and location. In this paper, we investigate spectrum occupancy of the UHF TV band in the frequency range from 470 to 862MHz by using two different devices, the low cost device RTL-SDR and high cost spectrum analyzer. The spectrum occupancy measurements provide evidence of the utility of using the inexpensive RTL SDR and illustrate its effectiveness for detection of the percentage of spectrum utilization compared with results from the conventional high cost Agilent spectrum analyzer, both systems employing various antennas
    corecore