2 research outputs found

    Concept and Feasibility Evaluation of Distributed Sensor-Based Measurement Systems Using Formation Flying Multicopters

    Get PDF
    Unmanned aerial vehicles (UAVs) have been used for increasing research applications in atmospheric measurements. However, most current solutions for these applications are based on a single UAV with limited payload capacity. In order to address the limitations of the single UAV-based approach, this paper proposes a new concept of measurements using tandem flying multicopters as a distributed sensor platform. Key challenges of the proposed concept are identified including the relative position estimation and control in wind-perturbed outdoor environment and the precise alignment of payloads. In the proposed concept, sliding mode control is chosen as the relative position controller and a gimbal stabilization system is introduced to achieve fine payload alignment. The characterization of the position estimation sensors (including global navigation satellite system and real-time kinematics) and flight controller is carried out using different UAVs (a DJI Matrice M600 Pro Hexacopter and Tarot X4 frame based Quadcopter) under different wind levels. Based on the experimental data, the performance of the sliding mode controller and the performance of the gimbal stabilization system are evaluated in a hardware-in-the-loop simulation environment (called ELISSA). Preliminary achievable control accuracies of the relative position and attitude of subsystems in the proposed concept are estimated based on experimental result

    A Survey of Practical Design Considerations of Optical Imaging Stabilization Systems for Small Unmanned Aerial Systems

    No full text
    Optical imaging systems are one of the most common sensors used for collecting data with small Unmanned Aerial Systems (sUAS). Plenty of research exists which present custom-made optical imaging systems for specific missions. However, the research commonly leaves out the explanation of design parameters and considerations taken during the design of the optical imaging system, especially the image stabilization strategy used, which is a significant issue in sUAS imaging missions. This paper surveys useful methodologies for designing a stabilized optical imaging system by presenting an overview of the important aspects that must be addressed in the designing phase and which tools and techniques are available and should be chosen according to the design requirements
    corecore