10,992 research outputs found

    A survey of normal form covers for context-free grammars

    Get PDF
    An overview is given of cover results for normal forms of context-free grammars. The emphasis in this paper is on the possibility of constructing É›-free grammars, non-left-recursive grammars and grammars in Greibach normal form. Among others it is proved that any É›-free context-free grammar can be right covered with a context-free grammar in Greibach normal form. All the cover results concerning the É›-free grammars, the non-left-recursive grammars and the grammars in Greibach normal form are listed, with respect to several types of covers, in a cover-table

    From left-regular to Greibach normal form grammars

    Get PDF
    Each context-free grammar can be transformed to a context-free grammar in Greibach normal form, that is, a context-free grammar where each right-hand side of a prorfuction begins with a terminal symbol and the remainder of the right-hand side consists of nonterminal symbols. In this short paper we show that for a left-regular grammar G we can obtain a right-regular grammar G’ (which is by definition in Greibach normal form) which left-to-right covers G (in this case left parses of G’ can be mapped by a homomorphism on right parses of G. Moreover, it is possible to obtain a context-free grammar G” in Greibach normal form which right covers the left-regular grammar G (in this case right parses of G” are mapped on right parses of G)

    Principles and Implementation of Deductive Parsing

    Get PDF
    We present a system for generating parsers based directly on the metaphor of parsing as deduction. Parsing algorithms can be represented directly as deduction systems, and a single deduction engine can interpret such deduction systems so as to implement the corresponding parser. The method generalizes easily to parsers for augmented phrase structure formalisms, such as definite-clause grammars and other logic grammar formalisms, and has been used for rapid prototyping of parsing algorithms for a variety of formalisms including variants of tree-adjoining grammars, categorial grammars, and lexicalized context-free grammars.Comment: 69 pages, includes full Prolog cod

    Context-Free Grammars: Covers, Normal Forms, and Parsing

    Get PDF

    An Abstract Machine for Unification Grammars

    Full text link
    This work describes the design and implementation of an abstract machine, Amalia, for the linguistic formalism ALE, which is based on typed feature structures. This formalism is one of the most widely accepted in computational linguistics and has been used for designing grammars in various linguistic theories, most notably HPSG. Amalia is composed of data structures and a set of instructions, augmented by a compiler from the grammatical formalism to the abstract instructions, and a (portable) interpreter of the abstract instructions. The effect of each instruction is defined using a low-level language that can be executed on ordinary hardware. The advantages of the abstract machine approach are twofold. From a theoretical point of view, the abstract machine gives a well-defined operational semantics to the grammatical formalism. This ensures that grammars specified using our system are endowed with well defined meaning. It enables, for example, to formally verify the correctness of a compiler for HPSG, given an independent definition. From a practical point of view, Amalia is the first system that employs a direct compilation scheme for unification grammars that are based on typed feature structures. The use of amalia results in a much improved performance over existing systems. In order to test the machine on a realistic application, we have developed a small-scale, HPSG-based grammar for a fragment of the Hebrew language, using Amalia as the development platform. This is the first application of HPSG to a Semitic language.Comment: Doctoral Thesis, 96 pages, many postscript figures, uses pstricks, pst-node, psfig, fullname and a macros fil

    Recovering Grammar Relationships for the Java Language Specification

    Get PDF
    Grammar convergence is a method that helps discovering relationships between different grammars of the same language or different language versions. The key element of the method is the operational, transformation-based representation of those relationships. Given input grammars for convergence, they are transformed until they are structurally equal. The transformations are composed from primitive operators; properties of these operators and the composed chains provide quantitative and qualitative insight into the relationships between the grammars at hand. We describe a refined method for grammar convergence, and we use it in a major study, where we recover the relationships between all the grammars that occur in the different versions of the Java Language Specification (JLS). The relationships are represented as grammar transformation chains that capture all accidental or intended differences between the JLS grammars. This method is mechanized and driven by nominal and structural differences between pairs of grammars that are subject to asymmetric, binary convergence steps. We present the underlying operator suite for grammar transformation in detail, and we illustrate the suite with many examples of transformations on the JLS grammars. We also describe the extraction effort, which was needed to make the JLS grammars amenable to automated processing. We include substantial metadata about the convergence process for the JLS so that the effort becomes reproducible and transparent
    • …
    corecore