17,242 research outputs found

    Using Sensor Metadata Streams to Identify Topics of Local Events in the City

    Get PDF
    In this paper, we study the emerging Information Retrieval (IR) task of local event retrieval using sensor metadata streams. Sensor metadata streams include information such as the crowd density from video processing, audio classifications, and social media activity. We propose to use these metadata streams to identify the topics of local events within a city, where each event topic corresponds to a set of terms representing a type of events such as a concert or a protest. We develop a supervised approach that is capable of mapping sensor metadata observations to an event topic. In addition to using a variety of sensor metadata observations about the current status of the environment as learning features, our approach incorporates additional background features to model cyclic event patterns. Through experimentation with data collected from two locations in a major Spanish city, we show that our approach markedly outperforms an alternative baseline. We also show that modelling background information improves event topic identification

    Unsupervised learning of generative topic saliency for person re-identification

    Get PDF
    (c) 2014. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.© 2014. The copyright of this document resides with its authors. Existing approaches to person re-identification (re-id) are dominated by supervised learning based methods which focus on learning optimal similarity distance metrics. However, supervised learning based models require a large number of manually labelled pairs of person images across every pair of camera views. This thus limits their ability to scale to large camera networks. To overcome this problem, this paper proposes a novel unsupervised re-id modelling approach by exploring generative probabilistic topic modelling. Given abundant unlabelled data, our topic model learns to simultaneously both (1) discover localised person foreground appearance saliency (salient image patches) that are more informative for re-id matching, and (2) remove busy background clutters surrounding a person. Extensive experiments are carried out to demonstrate that the proposed model outperforms existing unsupervised learning re-id methods with significantly simplified model complexity. In the meantime, it still retains comparable re-id accuracy when compared to the state-of-the-art supervised re-id methods but without any need for pair-wise labelled training data

    Identifying Rare and Subtle Behaviors: A Weakly Supervised Joint Topic Model

    Get PDF

    Hierarchical Attention Network for Action Segmentation

    Full text link
    The temporal segmentation of events is an essential task and a precursor for the automatic recognition of human actions in the video. Several attempts have been made to capture frame-level salient aspects through attention but they lack the capacity to effectively map the temporal relationships in between the frames as they only capture a limited span of temporal dependencies. To this end we propose a complete end-to-end supervised learning approach that can better learn relationships between actions over time, thus improving the overall segmentation performance. The proposed hierarchical recurrent attention framework analyses the input video at multiple temporal scales, to form embeddings at frame level and segment level, and perform fine-grained action segmentation. This generates a simple, lightweight, yet extremely effective architecture for segmenting continuous video streams and has multiple application domains. We evaluate our system on multiple challenging public benchmark datasets, including MERL Shopping, 50 salads, and Georgia Tech Egocentric datasets, and achieves state-of-the-art performance. The evaluated datasets encompass numerous video capture settings which are inclusive of static overhead camera views and dynamic, ego-centric head-mounted camera views, demonstrating the direct applicability of the proposed framework in a variety of settings.Comment: Published in Pattern Recognition Letter

    Scene modelling using an adaptive mixture of Gaussians in colour and space

    Get PDF
    We present an integrated pixel segmentation and region tracking algorithm, designed for indoor environments. Visual monitoring systems often use frame differencing techniques to independently classify each image pixel as either foreground or background. Typically, this level of processing does not take account of the global image structure, resulting in frequent misclassification. We use an adaptive Gaussian mixture model in colour and space to represent background and foreground regions of the scene. This model is used to probabilistically classify observed pixel values, incorporating the global scene structure into pixel-level segmentation. We evaluate our system over 4 sequences and show that it successfully segments foreground pixels and tracks major foreground regions as they move through the scene
    corecore