81 research outputs found

    Information Structure Design in Team Decision Problems

    Full text link
    We consider a problem of information structure design in team decision problems and team games. We propose simple, scalable greedy algorithms for adding a set of extra information links to optimize team performance and resilience to non-cooperative and adversarial agents. We show via a simple counterexample that the set function mapping additional information links to team performance is in general not supermodular. Although this implies that the greedy algorithm is not accompanied by worst-case performance guarantees, we illustrate through numerical experiments that it can produce effective and often optimal or near optimal information structure modifications

    On Submodularity and Controllability in Complex Dynamical Networks

    Full text link
    Controllability and observability have long been recognized as fundamental structural properties of dynamical systems, but have recently seen renewed interest in the context of large, complex networks of dynamical systems. A basic problem is sensor and actuator placement: choose a subset from a finite set of possible placements to optimize some real-valued controllability and observability metrics of the network. Surprisingly little is known about the structure of such combinatorial optimization problems. In this paper, we show that several important classes of metrics based on the controllability and observability Gramians have a strong structural property that allows for either efficient global optimization or an approximation guarantee by using a simple greedy heuristic for their maximization. In particular, the mapping from possible placements to several scalar functions of the associated Gramian is either a modular or submodular set function. The results are illustrated on randomly generated systems and on a problem of power electronic actuator placement in a model of the European power grid.Comment: Original arXiv version of IEEE Transactions on Control of Network Systems paper (Volume 3, Issue 1), with a addendum (located in the ancillary documents) that explains an error in a proof of the original paper and provides a counterexample to the corresponding resul

    Minimal Reachability is Hard To Approximate

    Full text link
    In this note, we consider the problem of choosing which nodes of a linear dynamical system should be actuated so that the state transfer from the system's initial condition to a given final state is possible. Assuming a standard complexity hypothesis, we show that this problem cannot be efficiently solved or approximated in polynomial, or even quasi-polynomial, time

    Minimal Actuator Placement with Optimal Control Constraints

    Full text link
    We introduce the problem of minimal actuator placement in a linear control system so that a bound on the minimum control effort for a given state transfer is satisfied while controllability is ensured. We first show that this is an NP-hard problem following the recent work of Olshevsky. Next, we prove that this problem has a supermodular structure. Afterwards, we provide an efficient algorithm that approximates up to a multiplicative factor of O(logn), where n is the size of the multi-agent network, any optimal actuator set that meets the specified energy criterion. Moreover, we show that this is the best approximation factor one can achieve in polynomial-time for the worst case. Finally, we test this algorithm over large Erdos-Renyi random networks to further demonstrate its efficiency.Comment: This version includes all the omitted proofs from the one to appear in the American Control Conference (ACC) 2015 proceeding
    • …
    corecore