10,415 research outputs found

    Descent methods for Nonnegative Matrix Factorization

    Full text link
    In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these different methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting this method as a rank-one approximation of the residue matrix, we prove that it \emph{converges} and also extend it to the nonnegative tensor factorization and introduce some variants of the method by imposing some additional controllable constraints such as: sparsity, discreteness and smoothness.Comment: 47 pages. New convergence proof using damped version of RRI. To appear in Numerical Linear Algebra in Signals, Systems and Control. Accepted. Illustrating Matlab code is included in the source bundl

    Dictionary-based Tensor Canonical Polyadic Decomposition

    Full text link
    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images

    Model Selection for Nonnegative Matrix Factorization by Support Union Recovery

    Full text link
    Nonnegative matrix factorization (NMF) has been widely used in machine learning and signal processing because of its non-subtractive, part-based property which enhances interpretability. It is often assumed that the latent dimensionality (or the number of components) is given. Despite the large amount of algorithms designed for NMF, there is little literature about automatic model selection for NMF with theoretical guarantees. In this paper, we propose an algorithm that first calculates an empirical second-order moment from the empirical fourth-order cumulant tensor, and then estimates the latent dimensionality by recovering the support union (the index set of non-zero rows) of a matrix related to the empirical second-order moment. By assuming a generative model of the data with additional mild conditions, our algorithm provably detects the true latent dimensionality. We show on synthetic examples that our proposed algorithm is able to find an approximately correct number of components

    Uniqueness of Nonnegative Tensor Approximations

    Full text link
    We show that for a nonnegative tensor, a best nonnegative rank-r approximation is almost always unique, its best rank-one approximation may always be chosen to be a best nonnegative rank-one approximation, and that the set of nonnegative tensors with non-unique best rank-one approximations form an algebraic hypersurface. We show that the last part holds true more generally for real tensors and thereby determine a polynomial equation so that a real or nonnegative tensor which does not satisfy this equation is guaranteed to have a unique best rank-one approximation. We also establish an analogue for real or nonnegative symmetric tensors. In addition, we prove a singular vector variant of the Perron--Frobenius Theorem for positive tensors and apply it to show that a best nonnegative rank-r approximation of a positive tensor can never be obtained by deflation. As an aside, we verify that the Euclidean distance (ED) discriminants of the Segre variety and the Veronese variety are hypersurfaces and give defining equations of these ED discriminants

    Overview of Constrained PARAFAC Models

    Get PDF
    In this paper, we present an overview of constrained PARAFAC models where the constraints model linear dependencies among columns of the factor matrices of the tensor decomposition, or alternatively, the pattern of interactions between different modes of the tensor which are captured by the equivalent core tensor. Some tensor prerequisites with a particular emphasis on mode combination using Kronecker products of canonical vectors that makes easier matricization operations, are first introduced. This Kronecker product based approach is also formulated in terms of the index notation, which provides an original and concise formalism for both matricizing tensors and writing tensor models. Then, after a brief reminder of PARAFAC and Tucker models, two families of constrained tensor models, the co-called PARALIND/CONFAC and PARATUCK models, are described in a unified framework, for NthN^{th} order tensors. New tensor models, called nested Tucker models and block PARALIND/CONFAC models, are also introduced. A link between PARATUCK models and constrained PARAFAC models is then established. Finally, new uniqueness properties of PARATUCK models are deduced from sufficient conditions for essential uniqueness of their associated constrained PARAFAC models
    corecore