284 research outputs found

    Indirect Image Registration with Large Diffeomorphic Deformations

    Full text link
    The paper adapts the large deformation diffeomorphic metric mapping framework for image registration to the indirect setting where a template is registered against a target that is given through indirect noisy observations. The registration uses diffeomorphisms that transform the template through a (group) action. These diffeomorphisms are generated by solving a flow equation that is defined by a velocity field with certain regularity. The theoretical analysis includes a proof that indirect image registration has solutions (existence) that are stable and that converge as the data error tends so zero, so it becomes a well-defined regularization method. The paper concludes with examples of indirect image registration in 2D tomography with very sparse and/or highly noisy data.Comment: 43 pages, 4 figures, 1 table; revise

    Diffeomorphic Learning

    Full text link
    We introduce in this paper a learning paradigm in which the training data is transformed by a diffeomorphic transformation before prediction. The learning algorithm minimizes a cost function evaluating the prediction error on the training set penalized by the distance between the diffeomorphism and the identity. The approach borrows ideas from shape analysis where diffeomorphisms are estimated for shape and image alignment, and brings them in a previously unexplored setting, estimating, in particular diffeomorphisms in much larger dimensions. After introducing the concept and describing a learning algorithm, we present diverse applications, mostly with synthetic examples, demonstrating the potential of the approach, as well as some insight on how it can be improved

    Deformations of quantum field theories on spacetimes with Killing vector fields

    Full text link
    The recent construction and analysis of deformations of quantum field theories by warped convolutions is extended to a class of curved spacetimes. These spacetimes carry a family of wedge-like regions which share the essential causal properties of the Poincare transforms of the Rindler wedge in Minkowski space. In the setting of deformed quantum field theories, they play the role of typical localization regions of quantum fields and observables. As a concrete example of such a procedure, the deformation of the free Dirac field is studied.Comment: 35 pages, 3 figure
    • …
    corecore