2,356 research outputs found

    The Quantum PCP Conjecture

    Full text link
    The classical PCP theorem is arguably the most important achievement of classical complexity theory in the past quarter century. In recent years, researchers in quantum computational complexity have tried to identify approaches and develop tools that address the question: does a quantum version of the PCP theorem hold? The story of this study starts with classical complexity and takes unexpected turns providing fascinating vistas on the foundations of quantum mechanics, the global nature of entanglement and its topological properties, quantum error correction, information theory, and much more; it raises questions that touch upon some of the most fundamental issues at the heart of our understanding of quantum mechanics. At this point, the jury is still out as to whether or not such a theorem holds. This survey aims to provide a snapshot of the status in this ongoing story, tailored to a general theory-of-CS audience.Comment: 45 pages, 4 figures, an enhanced version of the SIGACT guest column from Volume 44 Issue 2, June 201

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs

    Quantum Information and the PCP Theorem

    Full text link
    We show how to encode 2n2^n (classical) bits a1,...,a2na_1,...,a_{2^n} by a single quantum state ∣Ψ>|\Psi> of size O(n) qubits, such that: for any constant kk and any i1,...,ik∈{1,...,2n}i_1,...,i_k \in \{1,...,2^n\}, the values of the bits ai1,...,aika_{i_1},...,a_{i_k} can be retrieved from ∣Ψ>|\Psi> by a one-round Arthur-Merlin interactive protocol of size polynomial in nn. This shows how to go around Holevo-Nayak's Theorem, using Arthur-Merlin proofs. We use the new representation to prove the following results: 1) Interactive proofs with quantum advice: We show that the class QIP/qpolyQIP/qpoly contains ALL languages. That is, for any language LL (even non-recursive), the membership x∈Lx \in L (for xx of length nn) can be proved by a polynomial-size quantum interactive proof, where the verifier is a polynomial-size quantum circuit with working space initiated with some quantum state ∣ΨL,n>|\Psi_{L,n} > (depending only on LL and nn). Moreover, the interactive proof that we give is of only one round, and the messages communicated are classical. 2) PCP with only one query: We show that the membership x∈SATx \in SAT (for xx of length nn) can be proved by a logarithmic-size quantum state ∣Ψ>|\Psi >, together with a polynomial-size classical proof consisting of blocks of length polylog(n)polylog(n) bits each, such that after measuring the state ∣Ψ>|\Psi > the verifier only needs to read {\bf one} block of the classical proof. While the first result is a straight forward consequence of the new representation, the second requires an additional machinery of quantum low-degree-test that may be interesting in its own right.Comment: 30 page

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    Derandomized Parallel Repetition via Structured PCPs

    Full text link
    A PCP is a proof system for NP in which the proof can be checked by a probabilistic verifier. The verifier is only allowed to read a very small portion of the proof, and in return is allowed to err with some bounded probability. The probability that the verifier accepts a false proof is called the soundness error, and is an important parameter of a PCP system that one seeks to minimize. Constructing PCPs with sub-constant soundness error and, at the same time, a minimal number of queries into the proof (namely two) is especially important due to applications for inapproximability. In this work we construct such PCP verifiers, i.e., PCPs that make only two queries and have sub-constant soundness error. Our construction can be viewed as a combinatorial alternative to the "manifold vs. point" construction, which is the only construction in the literature for this parameter range. The "manifold vs. point" PCP is based on a low degree test, while our construction is based on a direct product test. We also extend our construction to yield a decodable PCP (dPCP) with the same parameters. By plugging in this dPCP into the scheme of Dinur and Harsha (FOCS 2009) one gets an alternative construction of the result of Moshkovitz and Raz (FOCS 2008), namely: a construction of two-query PCPs with small soundness error and small alphabet size. Our construction of a PCP is based on extending the derandomized direct product test of Impagliazzo, Kabanets and Wigderson (STOC 09) to a derandomized parallel repetition theorem. More accurately, our PCP construction is obtained in two steps. We first prove a derandomized parallel repetition theorem for specially structured PCPs. Then, we show that any PCP can be transformed into one that has the required structure, by embedding it on a de-Bruijn graph
    • …
    corecore