32,497 research outputs found

    Exploring Immersive Learning Experiences: A Survey

    Get PDF
    Immersive technologies have been shown to significantly improve learning as they can simplify and simulate complicated concepts in various fields. However, there is a lack of studies that analyze the recent evidence-based immersive learning experiences applied in a classroom setting or offered to the public. This study presents a systematic review of 42 papers to understand, compare, and reflect on recent attempts to integrate immersive technologies in education using seven dimensions: application field, the technology used, educational role, interaction techniques, evaluation methods, and challenges. The results show that most studies covered STEM (science, technology, engineering, math) topics and mostly used head-mounted display (HMD) virtual reality in addition to marker-based augmented reality, while mixed reality was only represented in two studies. Further, the studies mostly used a form of active learning, and highlighted touch and hardware-based interactions enabling viewpoint and select tasks. Moreover, the studies utilized experiments, questionnaires, and evaluation studies for evaluating the immersive experiences. The evaluations show improved performance and engagement, but also point to various usability issues. Finally, we discuss implications and future research directions, and compare our findings with related review studies

    Exploring the Design Space of Immersive Urban Analytics

    Full text link
    Recent years have witnessed the rapid development and wide adoption of immersive head-mounted devices, such as HTC VIVE, Oculus Rift, and Microsoft HoloLens. These immersive devices have the potential to significantly extend the methodology of urban visual analytics by providing critical 3D context information and creating a sense of presence. In this paper, we propose an theoretical model to characterize the visualizations in immersive urban analytics. Further more, based on our comprehensive and concise model, we contribute a typology of combination methods of 2D and 3D visualizations that distinguish between linked views, embedded views, and mixed views. We also propose a supporting guideline to assist users in selecting a proper view under certain circumstances by considering visual geometry and spatial distribution of the 2D and 3D visualizations. Finally, based on existing works, possible future research opportunities are explored and discussed.Comment: 23 pages,11 figure

    Exploring the Use of Virtual Worlds as a Scientific Research Platform: The Meta-Institute for Computational Astrophysics (MICA)

    Get PDF
    We describe the Meta-Institute for Computational Astrophysics (MICA), the first professional scientific organization based exclusively in virtual worlds (VWs). The goals of MICA are to explore the utility of the emerging VR and VWs technologies for scientific and scholarly work in general, and to facilitate and accelerate their adoption by the scientific research community. MICA itself is an experiment in academic and scientific practices enabled by the immersive VR technologies. We describe the current and planned activities and research directions of MICA, and offer some thoughts as to what the future developments in this arena may be.Comment: 15 pages, to appear in the refereed proceedings of "Facets of Virtual Environments" (FaVE 2009), eds. F. Lehmann-Grube, J. Sablating, et al., ICST Lecture Notes Ser., Berlin: Springer Verlag (2009); version with full resolution color figures is available at http://www.mica-vw.org/wiki/index.php/Publication

    Integration of virtual reality within the built environment curriculum

    Get PDF
    Virtual Reality (VR) technology is still perceived by many as being inaccessible and cost prohibitive with VR applications considered expensive to develop as well as challenging to operate. This paper reflects on current developments in VR technologies and describes an approach adopted for its phased integration into the academic curriculum of built environment students. The process and end results of implementing the integration are discussed and the paper illustrates the challenges of introducing VR, including the acceptance of the technology by academic staff and students, interest from industry, and issues pertaining to model development. It sets out to show that fairly sophisticated VR models can now be created by non-VR specialists using commercially available software and advocates that the implementation of VR will increase alongside industryis adoption of these tools and the emergence of a new generation of students with VR skills. The study shows that current VR technologies, if integrated appropriately within built environment academic programmes, demonstrate clear promise to provide a foundation for more widespread collaborative working environments

    Direct modeling techniques in the conceptual design stage in immersive environments for DfA&D

    Get PDF
    Due to the fast – growing competition of the mass – products markets, companies are looking for new technologies to maximize productivity and minimize time and costs. In the perspective of Computer Aided Process Planning (CAPP), companies want to optimize fixture design and assembly planning for different goals. To meet these demands, the designers' interest in Design for Assembly and Disassembly is growing considerably and is increasingly being integrated into the CAPP. The work described in this thesis aims to exploit immersive technologies to support the design of mating elements and assembly / disassembly, by developing a data exchange flow between the immersive environment and the modeling environment that provides the high – level modeling rules, both for modeling features and for assembly relationships. The main objective of the research is to develop the capability to model and execute simple coupling commands in a virtual environment by using fast direct modeling commands. With this tool the designer can model the coupling elements, position them and modify their layout. Thanks to the physical engine embedded in the scene editor software, it is possible to take into consideration physical laws such as gravity and collision between elements. A library of predefined assembly features has been developed through the use of an external modeling engine and put into communication with the immersive interaction environment. Subsequently, the research involved the study of immersive technologies for workforce development and training of workers. The research on immersive training involved industrial case studies, such as the projection of the disassembly sequence of an industrial product on a head mounted display, and less industrial case studies, such as the manual skills development of carpenters for AEC sectors and the surgeon training in the pre – operative planning in medical field

    An Immersive Telepresence System using RGB-D Sensors and Head Mounted Display

    Get PDF
    We present a tele-immersive system that enables people to interact with each other in a virtual world using body gestures in addition to verbal communication. Beyond the obvious applications, including general online conversations and gaming, we hypothesize that our proposed system would be particularly beneficial to education by offering rich visual contents and interactivity. One distinct feature is the integration of egocentric pose recognition that allows participants to use their gestures to demonstrate and manipulate virtual objects simultaneously. This functionality enables the instructor to ef- fectively and efficiently explain and illustrate complex concepts or sophisticated problems in an intuitive manner. The highly interactive and flexible environment can capture and sustain more student attention than the traditional classroom setting and, thus, delivers a compelling experience to the students. Our main focus here is to investigate possible solutions for the system design and implementation and devise strategies for fast, efficient computation suitable for visual data processing and network transmission. We describe the technique and experiments in details and provide quantitative performance results, demonstrating our system can be run comfortably and reliably for different application scenarios. Our preliminary results are promising and demonstrate the potential for more compelling directions in cyberlearning.Comment: IEEE International Symposium on Multimedia 201

    Impact of model fidelity in factory layout assessment using immersive discrete event simulation

    Get PDF
    Discrete Event Simulation (DES) can help speed up the layout design process. It offers further benefits when combined with Virtual Reality (VR). The latest technology, Immersive Virtual Reality (IVR), immerses users in virtual prototypes of their manufacturing plants to-be, potentially helping decision-making. This work seeks to evaluate the impact of visual fidelity, which refers to the degree to which objects in VR conforms to the real world, using an IVR visualisation of the DES model of an actual shop floor. User studies are performed using scenarios populated with low- and high-fidelity models. Study participant carried out four tasks representative of layout decision-making. Limitations of existing IVR technology was found to cause motion sickness. The results indicate with the particular group of naïve modellers used that there is no significant difference in benefits between low and high fidelity, suggesting that low fidelity VR models may be more cost-effective for this group
    • …
    corecore